

GILCHRIST CLASSROOM ADDITION GILCHRIST ELEMENTARY SCHOOL LEON COUNTY SCHOOLS 33006 TALLAHASSEE, FLORIDA

FOR LEON COUNTY SCHOOL BOARD

PROJECT MANUAL PHASE III SUBMITTAL – BID SET **VOLUME TWO**

June 18, 2012

GILCHRIST CLASSROOM ADDITION GILCHRIST ELEMENTARY SCHOOL LEON COUNTY SCHOOL DISTRICT

PROJECT MANUAL VOLUME ONE

TECHNICAL SPECIFICATIONS

LEON COUNTY SCHOOLS NONTECHNICAL SPECIFICATIONS SECTION A - INVITATION TO BID SECTION B – INSTRUCTION TO BIDDERS **BACKGROUND CHECKS (UPDATED 9-1-09)** SREF - RULE 6A.2.0010 FAC (12-07) SREF – CHAPTER 1, SECTION 1.1 (12-07) **BOARD POLICY 6.09 BID PROTESTS** SECTION C - BID FORM SECTION D – LISTING OF MAJOR SUBCONTRACTORS SECTION E - BID BOND SECTION F - ACCEPTABLE SURETY COMPANIES SECTION G - CONTRACT BONDS SECTION H – CONTRACT AGREEMENT PROGRESS PAYMENTS – EXHIBIT B (UPDATED 12-4-08) SECTION J - GENERAL CONDITIONS UPDATED INTO AIA 201 - 2007 (UPDATED 12-4-08) SECTION K - SUPPLEMENTARY GENERAL CONDITIONS UPDATED INTO AIA 201 - 2007 (UPDATED 12-4-08) SECTION L - INSURANCE CERTIFICATIONS (UPDATED 6-11-07) SECTION M - CONTRACT DOCUMENTS SECTION N - SMALL BUSINESS DEVELOPMENT OFFICE SECTION O - PROJECT SIGN SECTION P - LIST OF SUBCONTRACTORS/SUPPLIERS SECTION Q - PREVAILING WAGE RATES **DIVISION 1 – GENERAL REQUIREMENTS** SECTION 01010 - SUMMARY OF WORK SECTION 01027 – APPLICATION FOR PAYMENT SECTION 01030 - ALTERNATES SECTION 01040 - COORDINATION SECTION 01042 - COORDINATION DRAWINGS SECTION 01045 - CUTTINGAND PATCHING SECTION 01050 - FIELD ENGINEERING SECTION 01090 - DEFINITIONS AND STANDARDS SECTION 01200 - PROJECT MEETINGS SECTION 01210 - PROCEDURES AND PERFORMANCES SECTION 01310 - CONSTRUCTION SCHEDULE SECTION 01340 - SUBMITTALS SECTION 01370 - SCHEDULE OF VALUES SECTION 01410 - SPECIAL TESTING AND INSPECTION REQUIREMENTS SECTION 01510 - TEMPORARY AND PERMANENT UTILITY CONNECTIONS SECTION 01580 - PROJECT IDENTIFICATION SIGN

SECTION 01590 – FIELD OFFICES AND SHEDS

SECTION 01600 - MATERIAL AND EQUIPMENT

SECTION 01700 - CONTRACT CLOSEOUT

SECTION 01730 – OPERATION AND MAINTENANCE DATA

SECTION 01740 - WARRANTIES AND BONDS

SECTION 01750 – SPARE PARTS AND MAINTENANCE MATERIALS

SECTION 01760 – PROJECT PHOTOGAPHS

SECTION 019113 - GENERAL COMMISSIONING REQUIREMENTS

DIVISION 2 – SITE WORK

SECTION 02085 – GEOTECHNICAL INVESTIGATION SECTION 02200 – GENERAL SITEWORK SECTION 02361 – TERMITE CONTROL SECTION 02821 – CHAIN LINK FENCES AND GATES SECTION 02826 – ORNAMENTAL METAL F ENCES AND GATES SECTION 02870 – SITE FURNISHINGS

<u>DIVISION 3 – CONCRETE</u> SECTION 03100 – CONCRETE FORMWORK SECTION 03200 – CONCRETE REINFORCEMENT SECTION 03300 – CAST-IN-PLACE CONCRETE SECTION 0330531 – MISCELLANEOUS CAST-IN-PLACE CONCRETE FOR MECHANICAL AND ELECTRICAL SYSTEMS

<u>DIVISION 4 – MASONRY</u> SECTION 04230 – REINFORCED MASONRY

<u>DIVISION 5 – METALS</u> SECTION 05120 – STRUCTURAL STEEL

SECTION 05300 – STEEL DECK

SECTION 05400 – COLD-FORMED METAL FRAMING

SECTION 0550001 – METAL FABRICATIONS FOR MECHANICAL AND ELECTRICAL SYSTEMS

<u>DIVISION 6 – WOOD AND PLASTICS</u> SECTION 06100 – ROUGH CARPENTRY SECTION 06400 – ARCHITECTURAL WOODWORK

DIVISION 7 – THERMAL AND MOISTURE PROTECTION

SECTION 07210 – BUILDING INSULATION SECTION 07410 – METAL ROOF AND FASCIA PANELS SECTION 07600 – FLASHING AND SHEET METAL SECTION 07700 – ROOF SPECIALITIES SECTION 07841 – THROUGH PENETRATION FIRESTOP SYSTEMS SECTION 07900 – JOINT SEALERS

DIVISION 8 – DOORS AND WINDOWS

SECTION 08110 – STEEL DOORS AND FRAMES SECTION 0831131 – ACCESS DOORS AND FRAMES FOR MECHANICAL AND ELECTRICAL SYSTEMS SECTION 08510 – ALUMINUM WINDOWS SECTION 08710 – DOOR HARDWARE SECTION 08715 – DOOR HARDWARE SCHEDULE

DIVISION 9 – FINISHES

SECTION 09260 – GYPSUM BOARD AND ACOUSTICAL ASSEMBLIES SECTION 09300 – CERAMIC TILE SECTION 09511 – ACOUSTICAL CEILINGS SECTION 09650 – RESILIENT FLOORING SECTION 09680 – CARPET SECTION 09700 – RES-TEK FULL FLAKE SL FLOORING SYSTEM SECTION 09910 – PAINTING SECTION 099113 – EXTERIOR PAINTING SECTION 0991231 – INTERIOR PAINTING FOR MECHANICAL AND ELECTRICAL SYSTEMS

<u>DIVISION 10 – SPECIALTIES</u> SECTION 10101 – VISUAL DISPLAY SURFACES SECTION 10425 – SIGNS SECTION 10522 – FIRE EXTINGUISHERS AND ACCESSORIES SECTION 10530 – ALUMINUM WALKWAY COVERS SECTION 10800 – TOILET AND BATH ACCESSORIES SECTION 10830 – MIRROR UNITS

<u>DIVISION 12 – FURNISHINGS</u> SECTION 12511 – HORIZONTAL LOUVER BLINDS

PROJECT MANUAL VOLUME TWO

DIVISION 22 – PLUMBING
SECTION 220100 – GENERAL PROVISIONS FOR PLUMBING
SECTION 220110 – PROCUREMENT SUBSTITUTION PROCEDURES
SECTION 220115 – SUBSTITUTION PROCEDURES
SECTION 220120 – SUBMITTAL PROCEDURES
SECTION 220130 – QUALITY REQUIREMENTS
SECTION 220150 – PRODUCT REQUIREMENTS
SECTION 220160 – EXECUTION
SECTION 220170 – OPERATION AND MAINTENANCE DATA
SECTION 220190 – DEMONSTRATION AND TRAINING
SECTION 220516 – EXPANSION FITTINGS AND LOOPS FOR PLUMBING PIPING
SECTION 220517 – SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING
SECTION 220518 – ESCUTCHEONS FOR PLUMBING PIPING
SECTION 220519 – METERS AND GAGES FOR PLUMBING PIPING
SECTION 220523 – GENERAL-DUTY VALVES FOR PLUMBING PIPING
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT
SECTION 220548 – VIBRATION CONTROLS FOR PLUMBING PIPING AND EQUIPMENT
SECTION 220553 – IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
SECTION 220719 – PLUMBING PIPING INSULATION
SECTION 220800 – COMMISSIONING OF PLUMBING SYSTEMS

SECTION 221116 - DOMESTIC WATER PIPING SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES SECTION 221316 - SANITARY WASTE AND VENT PIPING SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES SECTION 221413 – FACILITY STORM DRAINAGE PIPING SECTION 221423 - STORM DRAINAGE PIPING SPECIALTIES SECTION 223300 - ELECTRIC, DOMESTIC-WATER HEATERS SECTION 224213.13 - COMMERCIAL WATER CLOSETS SECTION 224216.13 - COMMERCIAL LAVATORIES SECTION 224216.16 - COMMERCIAL SINKS SECTION 224716 – PRESSURE WATER COOLERS DIVISION 23 - HEATING, VENTILATING AND AIR CONDITIONING SECTION 230100 - GENERAL PROVISIONS FOR HVAC SECTION 230110 - PROCUREMENT SUBSTITUTION PROCEDURES SECTION 230115 - SUBSTITUTION PROCEDURES SECTION 230120 - SUBMITTAL PROCEDURES SECTION 230130 - QUALITY REQUIREMENTS SECTION 230140 - TEMPORARY FACILITIES AND CONTROLS SECTION 230150 - PRODUCT REQUIREMENTS SECTION 230160 - EXECUTION SECTION 230170 - OPERATION AND MAINTENANCE DATA SECTION 230190 - DEMONSTRATION AND TRAINING SECTION 230513 – COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT SECTION 230516 - EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING SECTION 230517 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING SECTION 230518 - ESCUTCHEONS FOR HVAC PIPING SECTION 230519 – METERS AND GAGES FOR HVAC PIPING SECTION 230523 - GENERAL-DUTY VALVES FOR HVAC PIPING SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT SECTION 230548 - VIBRATION CONTROLS FOR HVAC PIPING AND EQUIPMENT SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC SECTION 230713 - DUCT INSULATION SECTION 230716 - HVAC EQUIPMENT INSULATION SECTION 230719 - HVAC PIPING INSULATION SECTION 230800 - COMMISSIONING OF HVAC SECTION 230900 - INSTRUMENTATION AND CONTROL FOR HVAC SECTION 230923 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES SECTION 230928 - PATHWAYS FOR CONTROL-VOLTAGE CABLES SECTION 231123 - FACILITY NATURAL-GAS PIPING SECTION 232113 – HYDRONIC PIPING SECTION 232113.13 - UNDERGROUND HYDRONIC PIPING SECTION 232123 - HYDRONIC PUMPS SECTION 232300 - REFRIGERANT PIPING SECTION 232923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS SECTION 233113 - METAL DUCTS SECTION 233300 – AIR DUCT ACCESSORIES SECTION 233423 - HVAC POWER VENTILATORS SECTION 233600 - AIR TERMINAL UNITS SECTION 233713 - DIFFUSERS, REGISTERS, AND GRILLES

SECTION 233900 – LOUVERS AND VENTS

SECTION 234100 – PARTICULATE AIR FILTRATION

SECTION 235100 – BREECHINGS, CHIMNEYS, AND STACKS

SECTION 235233 – WATER-TUBE BOILERS

SECTION 236423 – SCROLL WATER CHILLERS

SECTION 237313 - MODULAR INDOOR CENTRAL-STATION AIR-HANDLING UNITS

SECTION 238126 – SPLIT-SYSTEM AIR-CONDITIONERS

SECTION 238219 – FAN COIL UNITS

DIVISION 26 – ELECTRICAL

SECTION 260100 - GENERAL PROVISIONS FOR ELECTRICAL

SECTION 260105 – SUBSTITUTION PROCEDURES

SECTION 260110 – PROCUREMENT SUBSTITUTION PROCEDURES

SECTION 260120 - SUBMITTAL PROCEDURES

SECTION 260130 – QUALITY REQUIREMENTS

SECTION 260140 – TEMPORARY FACILITIES AND CONTROLS

SECTION 260150 – PRODUCT REQUIREMENTS

SECTION 260160 – EXECUTION

SECTION 260170 – OPERATION AND MAINTENANCE DATA

SECTION 260180 – PROJECT RECORD DOCUMENTS

SECTION 260190 – DEMONSTRATION AND TRAINING

SECTION 260519 – LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

SECTION 260526 – GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

SECTION 260533 – RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

SECTION 260543 – UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

SECTION 260544 – SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

SECTION 260553 – IDENTIFICATION FOR ELECTRICAL SYSTEMS

SECTION 260800 – COMMISSIONING OF ELECTRICAL SYSTEMS

SECTION 260923 - LIGHTING CONTROL DEVICES

SECTION260953 – DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

SECTION 262416 – PANELBOARDS

SECTION 262726 – WIRING DEVICES

SECTION 262813 - FUSES

SECTION 262816 – ENCLOSED SWITCHES AND CIRCUIT BREAKERS

SECTION 262913 – ENCLOSED CONTROLLERS

SECTION 264313 – TRANSIENT-VOLTAGE SUPPRESSION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

SECTION 265100 – INTERIOR LIGHTING

END OF TECHNICAL SPECIFICATIONS

SECTION 220100 - GENERAL PROVISIONS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Applicable provisions of this section apply to all sections of Division 22, Plumbing.

1.2 INFORMATIONAL SUBMITTALS

- A. Furnish a copy of the installer's warranty.
- B. Furnish a copy of the manufacturer's warranty for each piece of equipment.

1.3 QUALITY ASSURANCE

- A. General:
 - 1. It is the intent of the plans and specifications to obtain a complete, operable and satisfactory installation.
 - 2. All materials shall be new, be properly labeled and/or identified and be in full compliance with the contract documents.
 - 3. All work shall comply with applicable Codes and Standards.
 - 4. Manufacturer's model names and numbers used in these specifications are subject to change per manufacturer's action. Contractor shall therefore verify them with manufacturer's representative before ordering any product or equipment
- B. Furnish new and unused materials and equipment manufactured in the U.S.A. Where two or more units of the same type or class of equipment are required provide units of a single manufacturer.

1.4 CODE REQUIREMENTS

- A. Perform work in accordance with the following codes and any applicable statutes, ordinances, codes, and regulations of governmental authorities having jurisdiction.
 - 1. ASHRAE
 - a. Standard 90.1 Energy Standard for Buildings Except Low Rise Residential Buildings
 - 2. Occupational Safety and Health Regulations (OSHA).
 - 3. National Fire Codes

- a. NFPA 1 Uniform Fire Code
- b. NFPA 54 National Fuel Gas Code
- c. NFPA 70 National Electrical Code
- d. NFPA 101 Life Safety Code
- 4. Florida Building Codes 2007 Edition w/ 2008 & 2009 Supplements
 - a. Building Code Chapter 11 Florida Accessibility Code
 - b. Building Code Chapter 13 Energy Efficiency Code
 - c. Plumbing Code
 - d. Fuel Gas Code
- 5. Florida Administrative Code
 - a. Chapter 6A–2 Educational Facilities
 - b. Chapter 61C-5 Florida Elevator Safety Code
 - c. Chapter 61G15-34 Responsibility Rules of Professional Engineers Concerning the Design of Mechanical Systems
 - d. Chapter 69A-3 Fire Prevention General Provisions
 - e. Chapter 69A-47 Uniform Fire Safety Standards for Elevators
 - f. Chapter 69A–58 Fire Safety in Educational Facilities
 - g. Chapter 69A-60 The Florida Fire Prevention Code
- 6. ADA Accessibility Guidelines for Buildings (ADAAG)
- B. Resolve, in writing, any code violation discovered in contract documents with the Engineer prior to bidding. After award of the contract, make any correction or addition necessary for compliance with applicable codes at no additional cost to Owner.
- C. The installer shall include in the work, without extra cost to the Owner, any labor, materials, services, apparatus and drawings required to comply with all applicable laws, ordinances, rules and regulations.

1.5 REFERENCE SPECIFICATIONS AND STANDARDS

- A. Materials which are specified by reference to Federal Specifications; ASTM, ASME, ANSI, or AWWA Specifications; Federal Standards; or other standard specifications must comply with latest editions, revisions, amendments or supplements in effect on date bids are received. Specifications and standards are minimum requirements for all equipment, material and work. In instances where capacities, size or other feature of equipment, devices or materials exceed these minimums, meet listed or shown capacities.
- B. Whenever a reference is made to a standard, installation and materials shall comply with the latest published edition of the standard at the time project is bid unless otherwise specified herein

1.6 PERMITS FEES AND INSPECTIONS

- A. Obtain and pay for all permits, fees, tap fees, connection charges, demand charges, systems charges, impact fees and inspections.
- B. Deliver all certificates of inspection issued by authorities having jurisdiction to the Engineer.

1.7 WARRANTY

A. Warranty work and equipment for one year from the date of final acceptance of the project. During the warranty period provide labor and materials to make good any faults or imperfections that may arise due to defects or omissions in materials or workmanship.

PART 2 - PRODUCTS

PART 3 - EXECUTION

3.1 CONTRACT DOCUMENTS

- A. Examine all drawings and specifications carefully before submitting a bid. Architectural drawings take precedence over mechanical or electrical drawings with reference to building construction. If discrepancies or conflicts occur between drawings, or between drawings and specifications, notify the Engineer in writing prior to bid date; however, the most stringent requirement shall govern.
- B. For purposes of clearness and legibility, drawings are essentially diagrammatic and, although size and location of equipment are drawn to scale wherever possible, Contractor shall make use of all data in all of the contract documents and shall verify this information at the building site.
- C. The drawings indicate required size and points of termination of pipes, conduits and ducts and suggest proper routes to conform to structure avoid obstructions and preserve clearances. However, it is not intended that drawings indicate all necessary offsets, and it shall be the responsibility of the Contractor to make the installation in such a manner as to conform to structure, avoid obstructions, preserve headroom and keep openings and passageways clear, without further instructions or cost to the Owner.
- D. Furnish, install and/or connect with appropriate services all items shown on any drawing without additional compensation.
- E. Consider the terms "provide" and "install" as synonymous with "furnish and install".
- F. Any and all questions about a subcontractor's scope of work responsibility shall be addressed to and answered by the Construction Manager.
- G. Questions About Construction Documents: Any and all questions shall be submitted through the proper channels IN WRITING and, in turn, shall be answered by the Engineer in writing. All telephone conversations shall be considered unofficial and, as such, shall not be considered official or binding responses to Contractor's questions.

3.2 INSTALLATION

- A. Install materials and equipment in a professional manner. The Engineer may direct replacement of items which, in his opinion, do not present a professional appearance. Replace or reinstall items at the expense of the Contractor.
- B. Obstructions
 - 1. The drawings indicate certain information pertaining to surface and subsurface obstructions which has been taken from available drawings. Such information is not guaranteed, however, as to accuracy of location or complete information.
 - 2. Before any cutting or trenching operations are begun, verify with Owner's representative, utility companies, municipalities, and other interested parties that all available information has been provided. Verify locations given.
 - 3. Should obstruction be encountered, whether shown or not, alter routing of new work, reroute existing lines, remove obstruction where permitted, or otherwise perform whatever work is necessary to satisfy the purpose of the new work and leave existing services and structures in a satisfactory and serviceable condition.
 - 4. Assume total responsibility for and repair any damage to existing utilities or construction, whether or not such existing facilities are shown.
- C. Where "rated" walls, floor, roofs and ceilings are penetrated or cut to install equipment, materials, devices, etc. the Contractor shall provide and install all materials required to reestablish the rating of the wall, floor, roof or ceiling to the satisfaction of the authority having jurisdiction.
- D. Space Requirements: Consider space limitations imposed by contiguous work in selection and location of equipment and material. Do not provide equipment or material which is not suitable in this respect.
- E. Select equipment to operate with minimum noise and vibration. If objectionable noise or vibration is produced or transmitted to or through the building structure by equipment, piping, ducts or other parts of work, rectify such conditions without cost to the Owner.
- F. Wiring Method: Install cables in raceways and cable trays except low voltage network cable above accessible ceilings. Conceal raceway and cables except in unfinished spaces.
 - 1. Comply with requirements for cable trays specified in Division 26 Section "Cable Trays for Electrical Systems."
 - 2. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceways and Boxes for Electrical Systems."
- G. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- H. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Tests
 - 1. Include all tests specified and/or required under laws, rules and regulations of all departments having jurisdiction. Tests shall also be performed as indicated herein and other sections of the specifications.
 - 2. After all systems have been completed and put into operation, subject each system to an operating test under design conditions to insure proper sequence and operation throughout the range of operation. Make adjustments as required to insure proper functioning of all systems.
 - 3. All parts of the work and associated equipment shall be tested and adjusted to work properly and be left in perfect operating condition.
 - 4. Correct defects disclosed by these tests without any additional cost to the Owner. Repeat tests on repaired or replaced work.
 - 5. Maintain a log of all tests being conducted and have it available for review by the Engineer. Log to indicate date, type of tests, duration, and defects noted and when corrected.
 - 6. Special tests on individual systems are specified under individual sections.

END OF SECTION 220100

This Page Left Intentionally Blank

DOCUMENT 220110 - PROCUREMENT SUBSTITUTION PROCEDURES

1.1 DEFINITIONS

- A. Procurement Substitution Requests: Requests for changes in products, materials, equipment, and methods of construction from those indicated in the Procurement and Contracting Documents, submitted prior to receipt of bids.
- B. Substitution Requests: Requests for changes in products, materials, equipment, and methods of construction from those indicated in the Contract Documents, submitted following Contract award. See Section 220115 "Substitution Procedures" for conditions under which Substitution requests will be considered following Contract award.

1.2 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

1.3 PROCUREMENT SUBSTITUTIONS

- A. Procurement Substitutions, General: By submitting a bid, the Bidder represents that its bid is based on materials and equipment described in the Procurement and Contracting Documents, including Addenda. Bidders are encouraged to request approval of qualifying substitute materials and equipment when the Specifications Sections list materials and equipment by product or manufacturer name.
- B. Procurement Substitution Requests will be received and considered by Owner when the following conditions are satisfied, as determined by Engineer; otherwise requests will be returned without action:
 - 1. Extensive revisions to the Contract Documents are not required.
 - 2. Proposed changes are in keeping with the general intent of the Contract Documents, including the level of quality of the Work represented by the requirements therein.
 - 3. The request is fully documented and properly submitted.

1.4 SUBMITTALS

- A. Procurement Substitution Request: Submit to Construction Manager. Procurement Substitution Request must be made in writing by prime contract Bidder only in compliance with the following requirements:
 - 1. Requests for substitution of materials and equipment will be considered if received no later than 10 days prior to date of bid opening.
 - 2. Submittal Format: Submit two copies of each written Procurement Substitution Request, using CSI Substitution Request Form 1.5C.

- a. Identify the product or the fabrication or installation method to be replaced in each request. Include related Specifications Sections and drawing numbers.
- b. Provide complete documentation on both the product specified and the proposed substitute, including the following information as appropriate:
 - 1) Point-by-point comparison of specified and proposed substitute product data, fabrication drawings, and installation procedures.
 - 2) Samples where applicable or when requested by Engineer.
 - 3) Detailed comparison of significant qualities of the proposed substitute with those of the Work specified. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
 - 4) Coordination information, including a list of changes or modifications needed to other parts of the Work and to construction performed by Owner and separate contractors, which will become necessary to accommodate the proposed substitute.
- c. Provide certification by manufacturer that the substitute proposed is equal to or superior to that required by the Procurement and Contracting Documents, and that its in-place performance will be equal to or superior to the product or equipment specified in the application indicated.
- d. Bidder, in submitting the Procurement Substitution Request, waives the right to additional payment or an extension of Contract Time because of the failure of the substitute to perform as represented in the Procurement Substitution Request.
- B. Engineer's Action:
 - 1. Engineer may request additional information or documentation necessary for evaluation of the Procurement Substitution Request. Engineer will notify all bidders of acceptance of the proposed substitute by means of an Addendum to the Procurement and Contracting Documents.
- C. Engineer's approval of a substitute during bidding does not relieve Contractor of the responsibility to submit required shop drawings and to comply with all other requirements of the Contract Documents.

END OF DOCUMENT 220110

SECTION 220115 - SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for substitutions.
- B. Related Requirements:
 - 1. Section 220150 "Product Requirements" for requirements for submitting comparable product submittals for products by listed manufacturers.

1.3 DEFINITIONS

- A. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.
 - 1. Substitutions for Cause: Changes proposed by Contractor that are required due to changed Project conditions, such as unavailability of product, regulatory changes, or unavailability of required warranty terms.
 - 2. Substitutions for Convenience: Changes proposed by Contractor or Owner that are not required in order to meet other Project requirements but may offer advantage to Contractor or Owner.

1.4 ACTION SUBMITTALS

- A. Substitution Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 - 1. Substitution Request Form: Use CSI Form 13.1A.
 - 2. Documentation: Show compliance with requirements for substitutions and the following, as applicable:
 - a. Statement indicating why specified product or fabrication or installation cannot be provided, if applicable.
 - b. Coordination information, including a list of changes or revisions needed to other parts of the Work and to construction performed by Owner and separate contractors, that will be necessary to accommodate proposed substitution.

- c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Include annotated copy of applicable Specification Section. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
- d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.
- e. Samples, where applicable or requested.
- f. Certificates and qualification data, where applicable or requested.
- g. Detailed comparison of Contractor's construction schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.
- h. Cost information, including a proposal of change, if any, in the Contract Sum.
- i. Contractor's certification that proposed substitution complies with requirements in the Contract Documents except as indicated in substitution request, is compatible with related materials, and is appropriate for applications indicated.
- j. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.
- 3. Engineer's Action: If necessary, Engineer will request additional information or documentation for evaluation within seven days of receipt of a request for substitution. Engineer will notify Contractor through Construction Manager of acceptance or rejection of proposed substitution within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.
 - a. Forms of Acceptance: Change Order, Construction Change Directive, or Architect's Supplemental Instructions for minor changes in the Work.
 - b. Use product specified if Engineer does not issue a decision on use of a proposed substitution within time allocated.

1.5 PROCEDURES

A. Coordination: Revise or adjust affected work as necessary to integrate work of the approved substitutions.

PART 2 - PRODUCTS

2.1 SUBSTITUTIONS

A. Substitutions for Cause: Submit requests for substitution immediately on discovery of need for change, but not later than 15 days prior to time required for preparation and review of related submittals.

- 1. Conditions: Engineer will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Engineer will return requests without action, except to record noncompliance with these requirements:
 - a. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 - b. Requested substitution provides sustainable design characteristics that specified product provided.
 - c. Substitution request is fully documented and properly submitted.
 - d. Requested substitution will not adversely affect Contractor's construction schedule.
 - e. Requested substitution has received necessary approvals of authorities having jurisdiction.
 - f. Requested substitution is compatible with other portions of the Work.
 - g. Requested substitution has been coordinated with other portions of the Work.
 - h. Requested substitution provides specified warranty.
 - i. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.
- B. Substitutions for Convenience: Engineer will consider requests for substitution if received within 60 days after the Notice of Award. Requests received after that time may be considered or rejected at discretion of Engineer.
 - 1. Conditions: Engineer will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Engineer will return requests without action, except to record noncompliance with these requirements:
 - a. Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner's additional responsibilities may include compensation to Engineer for redesign and evaluation services, increased cost of other construction by Owner, and similar considerations.
 - b. Requested substitution does not require extensive revisions to the Contract Documents.
 - c. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 - d. Requested substitution provides sustainable design characteristics that specified product provided .
 - e. Substitution request is fully documented and properly submitted.
 - f. Requested substitution will not adversely affect Contractor's construction schedule.
 - g. Requested substitution has received necessary approvals of authorities having jurisdiction.
 - h. Requested substitution is compatible with other portions of the Work.
 - i. Requested substitution has been coordinated with other portions of the Work.
 - j. Requested substitution provides specified warranty.
 - k. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

PART 3 - EXECUTION (Not Used)

END OF SECTION 220105

SECTION 220120 - SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes requirements for the submittal schedule and administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.
- B. Related Requirements:
 - 1. Section 220170 "Operation and Maintenance Data" for submitting operation and maintenance manuals.
 - 2. Section 220180 "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.
 - 3. Section 220190 "Demonstration and Training" for submitting video recordings of demonstration of equipment and training of Owner's personnel.

1.3 DEFINITIONS

- A. Action Submittals: Written and graphic information and physical samples that require Engineer's responsive action. Action submittals are those submittals indicated in individual Specification Sections as "action submittals."
- B. Informational Submittals: Written and graphic information and physical samples that do not require Engineer's responsive action. Submittals may be rejected for not complying with requirements. Informational submittals are those submittals indicated in individual Specification Sections as "informational submittals."
- C. File Transfer Protocol (FTP): Communications protocol that enables transfer of files to and from another computer over a network and that serves as the basis for standard Internet protocols. An FTP site is a portion of a network located outside of network firewalls within which internal and external users are able to access files.
- D. Portable Document Format (PDF): An open standard file format licensed by Adobe Systems used for representing documents in a device-independent and display resolution-independent fixed-layout document format.

1.4 SUBMITTAL ADMINISTRATIVE REQUIREMENTS

- A. Engineer's Digital Data Files: Electronic digital data files of the Contract Drawings will not be provided by Engineer for Contractor's use in preparing submittals.
- B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 - 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 - 2. Submit all submittal items required for each Specification Section concurrently unless partial submittals for portions of the Work are indicated on approved submittal schedule.
 - 3. Submit action submittals and informational submittals required by the same Specification Section as separate packages under separate transmittals.
 - 4. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.
 - a. Engineer reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.
- C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Engineer's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 - 1. Initial Review: Allow 15 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Engineer will advise Contractor when a submittal being processed must be delayed for coordination.
 - 2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.
 - 3. Resubmittal Review: Allow 15 days for review of each resubmittal.
 - 4. Sequential Review: Where sequential review of submittals by Engineer's consultants, Owner, or other parties is indicated, allow 21 days for initial review of each submittal.
- D. Electronic Submittals: Identify and incorporate information in each electronic submittal file as follows:
 - 1. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.
 - 2. Name file with submittal number or other unique identifier, including revision identifier.
 - a. File name shall use project identifier and Specification Section number followed by a decimal point and then a sequential number (e.g., LNHS-061000.01). Resubmittals shall include an alphabetic suffix after another decimal point (e.g., LNHS-061000.01.A).
 - 3. Provide means for insertion to permanently record Contractor's review and approval markings and action taken by Engineer.

- 4. Transmittal Form for Electronic Submittals: Use electronic form acceptable to Owner, containing the following information:
 - a. Project name.
 - b. Date.
 - c. Name and address of Engineer.
 - d. Name of Construction Manager.
 - e. Name of Contractor.
 - f. Name of firm or entity that prepared submittal.
 - g. Names of subcontractor, manufacturer, and supplier.
 - h. Category and type of submittal.
 - i. Submittal purpose and description.
 - j. Specification Section number and title.
 - k. Specification paragraph number or drawing designation and generic name for each of multiple items.
 - 1. Drawing number and detail references, as appropriate.
 - m. Location(s) where product is to be installed, as appropriate.
 - n. Related physical samples submitted directly.
 - o. Indication of full or partial submittal.
 - p. Transmittal number, numbered consecutively.
 - q. Submittal and transmittal distribution record.
 - r. Other necessary identification.
 - s. Remarks.
- 5. Metadata: Include the following information as keywords in the electronic submittal file metadata:
 - a. Project name.
 - b. Number and title of appropriate Specification Section.
 - c. Manufacturer name.
 - d. Product name.
- E. Options: Identify options requiring selection by Engineer.
- F. Deviations and Additional Information: On an attached separate sheet, prepared on Contractor's letterhead, record relevant information, requests for data, revisions other than those requested by Engineer on previous submittals, and deviations from requirements in the Contract Documents, including minor variations and limitations. Include same identification information as related submittal.
- G. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
 - 1. Note date and content of previous submittal.
 - 2. Note date and content of revision in label or title block and clearly indicate extent of revision.
 - 3. Resubmit submittals until they are marked with approval notation from Engineer's action stamp.
- H. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.

I. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Engineer's action stamp.

PART 2 - PRODUCTS

2.1 SUBMITTAL PROCEDURES

- A. General Submittal Procedure Requirements: Prepare and submit submittals required by individual Specification Sections. Types of submittals are indicated in individual Specification Sections.
 - 1. Post electronic submittals as PDF electronic files directly to Engineer's FTP site specifically established for Project.
 - a. Engineer will return annotated file. Annotate and retain one copy of file as an electronic Project record document file.
 - 2. Certificates and Certifications Submittals: Provide a statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity.
 - a. Provide a digital signature with digital certificate on electronically submitted certificates and certifications where indicated.
- B. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.
 - 1. If information must be specially prepared for submittal because standard published data are not suitable for use, submit as Shop Drawings, not as Product Data.
 - 2. Mark each copy of each submittal to show which products and options are applicable.
 - 3. Include the following information, as applicable:
 - a. Manufacturer's catalog cuts.
 - b. Manufacturer's product specifications.
 - c. Standard color charts.
 - d. Statement of compliance with specified referenced standards.
 - e. Testing by recognized testing agency.
 - f. Application of testing agency labels and seals.
 - g. Notation of coordination requirements.
 - h. Availability and delivery time information.
 - 4. For equipment, include the following in addition to the above, as applicable:
 - a. Wiring diagrams showing factory-installed wiring.
 - b. Printed performance curves.
 - c. Operational range diagrams.
 - d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.

- 5. Submit Product Data before or concurrent with Samples.
- 6. Submit Product Data in the following format:
 - a. PDF electronic file.
- C. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data.
 - 1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 - a. Identification of products.
 - b. Schedules.
 - c. Compliance with specified standards.
 - d. Notation of coordination requirements.
 - e. Notation of dimensions established by field measurement.
 - f. Relationship and attachment to adjoining construction clearly indicated.
 - g. Seal and signature of professional engineer if specified.
 - 2. Sheet Size: Except for templates, patterns, and similar full-size drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches (215 by 280 mm), but no larger than 30 by 42 inches (750 by 1067 mm).
 - 3. Submit Shop Drawings in the following format:
 - a. PDF electronic file.
- D. Maintenance Data: Comply with requirements specified in Section 230170 "Operation and Maintenance Data."
- E. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of Engineers and owners, and other information specified.
- F. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification and Procedure Qualification Record on AWS forms. Include names of firms and personnel certified.
- G. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.
- H. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.

PART 3 - EXECUTION

3.1 CONTRACTOR'S REVIEW

- A. Action and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Engineer.
- B. Approval Stamp: Stamp each submittal with a uniform, approval stamp. Include Project name and location, submittal number, Specification Section title and number, name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.

3.2 ENGINEER'S ACTION

- A. Action Submittals: Engineer will review each submittal, make marks to indicate corrections or revisions required, and return it. Engineer will stamp each submittal with an action stamp and will mark stamp appropriately to indicate action.
- B. Informational Submittals: Engineer will review each submittal and will not return it, or will return it if it does not comply with requirements. Engineer will forward each submittal to appropriate party.
- C. Partial submittals prepared for a portion of the Work will be reviewed when use of partial submittals has received prior approval from Engineer.
- D. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.
- E. Submittals not required by the Contract Documents may be returned by the Engineer without action.
- F. Submittals on any particular phase of Work will receive only one review and one re-review (if required). If additional reviews are required beyond these two, the Contractor will be charged \$100.00 per hour for review time. This fee shall be paid to the Engineer prior to Submittal release.

END OF SECTION 220120

SECTION 220130 - QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for quality assurance and quality control.
- B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
 - 1. Specific quality-assurance and -control requirements for individual construction activities are specified in the Sections that specify those activities. Requirements in those Sections may also cover production of standard products.
 - 2. Specified tests, inspections, and related actions do not limit Contractor's other qualityassurance and -control procedures that facilitate compliance with the Contract Document requirements.
 - 3. Requirements for Contractor to provide quality-assurance and -control services required by Engineer, Owner, Commissioning Authority, or authorities having jurisdiction are not limited by provisions of this Section.
 - 4. Specific test and inspection requirements are not specified in this Section.

1.3 DEFINITIONS

- A. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.
- B. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Engineer.
- C. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work.
- D. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.

- E. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations.
 - 1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade(s).
- F. Experienced: When used with an entity or individual, "experienced" means having successfully completed a minimum of five previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.

1.4 CONFLICTING REQUIREMENTS

- A. Referenced Standards: If compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but apparently equal, to Engineer for a decision before proceeding.
- B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Engineer for a decision before proceeding.

1.5 QUALITY ASSURANCE

- A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.
- B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- D. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.
- E. Manufacturer's Technical Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

F. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

1.6 QUALITY CONTROL

- A. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections.
- B. Manufacturer's Technical Services: Where indicated, engage a manufacturer's technical representative to observe and inspect the Work. Manufacturer's technical representative's services include participation in preinstallation conferences, examination of substrates and conditions, verification of materials, observation of Installer activities, inspection of completed portions of the Work, and submittal of written reports.
- C. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.
- D. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.
 - 1. Schedule times for tests, inspections, obtaining samples, and similar activities.
- E. Schedule of Tests and Inspections: Prepare a schedule of tests, inspections, and similar qualitycontrol services required by the Contract Documents as a component of Contractor's qualitycontrol plan. Coordinate and submit concurrently with Contractor's construction schedule. Update as the Work progresses.
 - 1. Distribution: Distribute schedule to Owner, Engineer, Commissioning Authority, testing agencies, and each party involved in performance of portions of the Work where tests and inspections are required.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TEST AND INSPECTION LOG

- A. Test and Inspection Log: Prepare a record of tests and inspections. Include the following:
 - 1. Date test or inspection was conducted.
 - 2. Description of the Work tested or inspected.
 - 3. Date test or inspection results were transmitted to Engineer.
 - 4. Identification of testing agency or special inspector conducting test or inspection.

B. Maintain log at Project site. Post changes and revisions as they occur. Provide access to test and inspection log for Engineer's, Commissioning Authority's, reference during normal working hours.

3.2 REPAIR AND PROTECTION

- A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.
 - 1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. Comply with the Contract Document requirements for cutting and patching in Section 220160 "Execution."
- B. Protect construction exposed by or for quality-control service activities.
- C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

END OF SECTION 220130

SECTION 220150 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; and comparable products.
- B. Related Requirements:
 - 1. Section 220115 "Substitution Procedures" for requests for substitutions.

1.3 DEFINITIONS

- A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.
 - 1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature, that is current as of date of the Contract Documents.
 - 2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.
 - 3. Comparable Product: Product that is demonstrated and approved through submittal process to have the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.
- B. Basis-of-Design Product Specification: A specification in which a specific manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation, to establish the significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics for purposes of evaluating comparable products of additional manufacturers named in the specification.

1.4 ACTION SUBMITTALS

- A. Comparable Product Requests: Submit request for consideration of each comparable product. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 - 1. Include data to indicate compliance with the requirements specified in "Comparable Products" Article.
 - 2. Engineer's Action: If necessary, Engineer will request additional information or documentation for evaluation within one week of receipt of a comparable product request. Engineer will notify Contractor of approval or rejection of proposed comparable product request within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.
 - a. Form of Approval: As specified in Section 220120 "Submittal Procedures."
 - b. Use product specified if Engineer does not issue a decision on use of a comparable product request within time allocated.
- B. Basis-of-Design Product Specification Submittal: Comply with requirements in Section 220120 "Submittal Procedures." Show compliance with requirements.

1.5 QUALITY ASSURANCE

- A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.
 - 1. Each contractor is responsible for providing products and construction methods compatible with products and construction methods of other contractors.
 - 2. If a dispute arises between contractors over concurrently selectable but incompatible products, Engineer will determine which products shall be used.

1.6 PRODUCT DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.
- B. Delivery and Handling:
 - 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
 - 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
 - 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.

- 4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.
- C. Storage:
 - 1. Store products to allow for inspection and measurement of quantity or counting of units.
 - 2. Store materials in a manner that will not endanger Project structure.
 - 3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
 - 4. Protect foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
 - 5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
 - 6. Protect stored products from damage and liquids from freezing.
 - 7. Provide a secure location and enclosure at Project site for storage of materials and equipment by Owner's construction forces. Coordinate location with Owner.

1.7 PRODUCT WARRANTIES

- A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.
 - 1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
 - 2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.
- B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.
 - 1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
 - 2. Specified Form: When specified forms are included with the Specifications, prepare a written document using indicated form properly executed.
 - 3. See other Sections for specific content requirements and particular requirements for submitting special warranties.

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

- A. General Product Requirements: Provide products that comply with the Contract Documents, are undamaged and, unless otherwise indicated, are new at time of installation.
 - 1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.

- 2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.
- 3. Owner reserves the right to limit selection to products with warranties not in conflict with requirements of the Contract Documents.
- 4. Where products are accompanied by the term "as selected," Engineer will make selection.
- 5. Descriptive, performance, and reference standard requirements in the Specifications establish salient characteristics of products.
- 6. Or Equal: For products specified by name and accompanied by the term "or equal," or "or approved equal," or "or approved," comply with requirements in "Comparable Products" Article to obtain approval for use of an unnamed product.
- B. Product Selection Procedures:
 - 1. Product: Where Specifications name a single manufacturer and product, provide the named product that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
 - 2. Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
 - 3. Products:
 - a. Restricted List: Where Specifications include a list of names of both manufacturers and products, provide one of the products listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered unless otherwise indicated.
 - b. Nonrestricted List: Where Specifications include a list of names of both available manufacturers and products, provide one of the products listed, or an unnamed product, that complies with requirements. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product.
 - 4. Manufacturers:
 - a. Restricted List: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered unless otherwise indicated.
 - b. Nonrestricted List: Where Specifications include a list of available manufacturers, provide a product by one of the manufacturers listed, or a product by an unnamed manufacturer, that complies with requirements. Comply with requirements in "Comparable Products" Article for consideration of an unnamed manufacturer's product.
 - 5. Basis-of-Design Product: Where Specifications name a product, or refer to a product indicated on Drawings, and include a list of manufacturers, provide the specified or indicated product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product by one of the other named manufacturers.

C. Visual Selection Specification: Where Specifications include the phrase "as selected by Engineer from manufacturer's full range" or similar phrase, select a product that complies with requirements. Engineer will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

2.2 COMPARABLE PRODUCTS

- A. Conditions for Consideration: Engineer will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Engineer may return requests without action, except to record noncompliance with these requirements:
 - 1. Evidence that the proposed product does not require revisions to the Contract Documents, that it is consistent with the Contract Documents and will produce the indicated results, and that it is compatible with other portions of the Work.
 - 2. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.
 - 3. Evidence that proposed product provides specified warranty.
 - 4. List of similar installations for completed projects with project names and addresses and names and addresses of engineers and owners, if requested.
 - 5. Samples, if requested.

PART 3 - EXECUTION (Not Used)

END OF SECTION 220150

This Page Left Intentionally Blank

SECTION 220160 - EXECUTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:
 - 1. Installation of the Work.
 - 2. Cutting and patching.
 - 3. Coordination of Owner-installed products.
 - 4. Progress cleaning.
 - 5. Starting and adjusting.
 - 6. Protection of installed construction.
 - 7. Correction of the Work.

1.3 DEFINITIONS

- A. Cutting: Removal of in-place construction necessary to permit installation or performance of other work.
- B. Patching: Fitting and repair work required to restore construction to original conditions after installation of other work.
- C. Concealed Work: Work hidden from view, including inside chases, furred spaces, above ceilings or on mezzanines.
- D. Exposed Work: Work open to view, including inside mechanical and equipment rooms.

1.4 QUALITY ASSURANCE

- A. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.
 - 1. Structural Elements: When cutting and patching structural elements, notify Engineer of locations and details of cutting and await directions from Engineer before proceeding. Shore, brace, and support structural elements during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection

- 2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety. Operational elements include the following:
 - a. Primary operational systems and equipment.
 - b. Fire separation assemblies.
 - c. Air or smoke barriers.
 - d. Fire-suppression systems.
 - e. Mechanical systems piping and ducts.
 - f. Control systems.
 - g. Communication systems.
 - h. Fire-detection and -alarm systems.
 - i. Conveying systems.
 - j. Electrical wiring systems.
 - k. Operating systems of special construction.
- 3. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety. Other construction elements include but are not limited to the following:
 - a. Water, moisture, or vapor barriers.
 - b. Membranes and flashings.
 - c. Sprayed fire-resistive material.
 - d. Equipment supports.
 - e. Piping, ductwork, vessels, and equipment.
 - f. Noise- and vibration-control elements and systems.
- 4. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Engineer's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.
- B. Manufacturer's Installation Instructions: Obtain and maintain on-site manufacturer's written recommendations and instructions for installation of products and equipment.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. General: Comply with requirements specified in other Sections.
- B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.
1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Engineer for the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Existing Conditions: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning sitework, investigate and verify the existence and location of underground utilities, mechanical and electrical systems, and other construction affecting the Work.
 - 1. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, and water-service piping; underground electrical services, and other utilities.
 - 2. Furnish location data for work related to Project that must be performed by public utilities serving Project site.
- B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.
 - 1. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.
 - 2. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.
 - 3. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.
- C. Written Report: Where a written report listing conditions detrimental to performance of the Work is required by other Sections, include the following:
 - 1. Description of the Work.
 - 2. List of detrimental conditions, including substrates.
 - 3. List of unacceptable installation tolerances.
 - 4. Recommended corrections.
- D. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Existing Utility Information: Furnish information to [**local utility**] [**Owner**] that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction.

- B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
- C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.
- D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of Contractor, submit a request for information to Engineer.

3.3 INSTALLATION

- A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 - 1. Make vertical work plumb and make horizontal work level.
 - 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 - 3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.
 - 4. Maintain minimum headroom clearance of 96 inches (2440 mm) in occupied spaces and 90 inches (2300 mm) in unoccupied spaces.
- B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.
- C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.
- D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.
- E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.
- F. Tools and Equipment: Do not use tools or equipment that produce harmful noise levels.
- G. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.
- H. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.

- 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Engineer.
- 2. Allow for building movement, including thermal expansion and contraction.
- 3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.
- I. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.
- J. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.

3.4 CUTTING AND PATCHING

- A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.
 - 1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.
- B. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.
- C. Temporary Support: Provide temporary support of work to be cut.
- D. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.
- E. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to minimize interruption to occupied areas.
- F. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.
 - 1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 - 2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
 - 3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
 - 4. Excavating and Backfilling: Comply with requirements in applicable Sections where required by cutting and patching operations.

- 5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.
- 6. Proceed with patching after construction operations requiring cutting are complete.
- G. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.
 - 1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.
 - 2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.
 - a. Clean piping, conduit, and similar features before applying paint or other finishing materials.
 - b. Restore damaged pipe covering to its original condition.
 - 3. Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.
 - a. Where patching occurs in a painted surface, prepare substrate and apply primer and intermediate paint coats appropriate for substrate over the patch, and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.
 - 4. Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.
 - 5. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition and ensures thermal and moisture integrity of building enclosure.
- H. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.5 PROGRESS CLEANING

- A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.
 - 1. Comply with requirements in NFPA 241 for removal of combustible waste materials and debris.
 - 2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F (27 deg C).
 - 3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.

- a. Use containers intended for holding waste materials of type to be stored.
- B. Site: Maintain Project site free of waste materials and debris.
- C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.
 - 1. Remove liquid spills promptly.
 - 2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.
- D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.
- E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.
- F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.
- G. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.
- H. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.
- I. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.6 FINAL CLEANING

- A. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.
 - 1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:
 - a. Remove tools, construction equipment, machinery, and surplus material from Project site.
 - b. Remove labels that are not permanent.
 - c. Wipe surfaces of equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
 - d. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.

3.7 REPAIR OF WORK

- A. Complete repair and restoration operations before requesting inspection for determination of Substantial Completion.
- B. Repair or remove and replace defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.
 - 1. Touch up and otherwise repair and restore marred or exposed finishes and surfaces. Replace finishes and surfaces that that already show evidence of repair or restoration.
 - a. Do not paint over "UL" and other required labels and identification, including mechanical and electrical nameplates. Remove paint applied to required labels and identification.
 - 2. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.

3.8 STARTING AND ADJUSTING

- A. Coordinate startup and adjusting of equipment and operating components with requirements in Section 019113 "General Commissioning Requirements."
- B. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.
- C. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.
- D. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- E. Manufacturer's Field Service: Comply with qualification requirements in Section 220130 "Quality Requirements."

3.9 PROTECTION OF INSTALLED CONSTRUCTION

- A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.
- B. Comply with manufacturer's written instructions for temperature and relative humidity.

SECTION 220170 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 - 1. Operation and maintenance documentation directory.
 - 2. Operation manuals for systems, subsystems, and equipment.
 - 3. Product maintenance manuals.
 - 4. Systems and equipment maintenance manuals.
- B. Related Requirements:
 - 1. Section 220120 "Submittal Procedures" for submitting copies of submittals for operation and maintenance manuals.
 - 2. Section 019113 "General Commissioning Requirements" for verification and compilation of data into operation and maintenance manuals.

1.3 DEFINITIONS

- A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.
- B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 CLOSEOUT SUBMITTALS

- A. Manual Content: Operations and maintenance manual content is specified in individual Specification Sections to be reviewed at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.
 - 1. Engineer will comment on whether content of operations and maintenance submittals are acceptable.
 - 2. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.
- B. Format: Submit operations and maintenance manuals in the following format:

- 1. PDF electronic file. Assemble each manual into a composite electronically indexed file. Submit on digital media acceptable to Engineer.
 - a. Name each indexed document file in composite electronic index with applicable item name. Include a complete electronically linked operation and maintenance directory.
 - b. Enable inserted reviewer comments on draft submittals.
- C. Initial Manual Submittal: Submit draft copy of each manual at least 60 days before commencing demonstration and training. Engineer will comment on whether general scope and content of manual are acceptable.
- D. Final Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Engineer will return copy with comments.
 - 1. Correct or revise each manual to comply with Engineer's comments. Submit copies of each corrected manual within 15 days of receipt of Engineer's comments and prior to commencing demonstration and training.

PART 2 - PRODUCTS

2.1 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY

- A. Directory: Prepare a single, comprehensive directory of operation and maintenance data and materials, listing items and their location to facilitate ready access to desired information. Include a section in the directory for each of the following:
 - 1. List of documents.
 - 2. List of systems.
 - 3. List of equipment.
 - 4. Table of contents.
- B. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.
- C. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list.
- D. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.
- E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents. If no designation exists, assign a designation according to ASHRAE Guideline 4, "Preparation of Operating and Maintenance Documentation for Building Systems."

2.2 REQUIREMENTS FOR OPERATION AND MAINTENANCE MANUALS

- A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:
 - 1. Title page.
 - 2. Table of contents.
 - 3. Manual contents.
- B. Title Page: Include the following information:
 - 1. Subject matter included in manual.
 - 2. Name and address of Project.
 - 3. Name and address of Owner.
 - 4. Date of submittal.
 - 5. Name and contact information for Contractor.
 - 6. Name and contact information for Construction Manager.
 - 7. Name and contact information for Engineer.
 - 8. Name and contact information for Commissioning Authority.
 - 9. Names and contact information for major consultants to the Engineer that designed the systems contained in the manuals.
 - 10. Cross-reference to related systems in other operation and maintenance manuals.
- C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
 - 1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.
- D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.
- E. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.
 - 1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
 - 2. File Names and Bookmarks: Enable bookmarking of individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.

2.3 OPERATION MANUALS

- A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 - 1. System, subsystem, and equipment descriptions. Use designations for systems and equipment indicated on Contract Documents.
 - 2. Performance and design criteria if Contractor has delegated design responsibility.
 - 3. Operating standards.
 - 4. Operating procedures.
 - 5. Operating logs.
 - 6. Wiring diagrams.
 - 7. Control diagrams.
 - 8. Piped system diagrams.
 - 9. Precautions against improper use.
 - 10. License requirements including inspection and renewal dates.
- B. Descriptions: Include the following:
 - 1. Product name and model number. Use designations for products indicated on Contract Documents.
 - 2. Manufacturer's name.
 - 3. Equipment identification with serial number of each component.
 - 4. Equipment function.
 - 5. Operating characteristics.
 - 6. Limiting conditions.
 - 7. Performance curves.
 - 8. Engineering data and tests.
 - 9. Complete nomenclature and number of replacement parts.
- C. Operating Procedures: Include the following, as applicable:
 - 1. Startup procedures.
 - 2. Equipment or system break-in procedures.
 - 3. Routine and normal operating instructions.
 - 4. Regulation and control procedures.
 - 5. Instructions on stopping.
 - 6. Normal shutdown instructions.
 - 7. Seasonal and weekend operating instructions.
 - 8. Required sequences for electric or electronic systems.
 - 9. Special operating instructions and procedures.
- D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.
- E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.4 PRODUCT MAINTENANCE MANUALS

- A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.
- B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.
- C. Product Information: Include the following, as applicable:
 - 1. Product name and model number.
 - 2. Manufacturer's name.
 - 3. Color, pattern, and texture.
 - 4. Material and chemical composition.
 - 5. Reordering information for specially manufactured products.
- D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 - 1. Inspection procedures.
 - 2. Types of cleaning agents to be used and methods of cleaning.
 - 3. List of cleaning agents and methods of cleaning detrimental to product.
 - 4. Schedule for routine cleaning and maintenance.
 - 5. Repair instructions.
- E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.
- F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

2.5 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

- A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.
- B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.

- C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:
 - 1. Standard maintenance instructions and bulletins.
 - 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 - 3. Identification and nomenclature of parts and components.
 - 4. List of items recommended to be stocked as spare parts.
- D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 - 1. Test and inspection instructions.
 - 2. Troubleshooting guide.
 - 3. Precautions against improper maintenance.
 - 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - 5. Aligning, adjusting, and checking instructions.
 - 6. Demonstration and training video recording, if available.
- E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
 - 1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
 - 2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.
- F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.
- G. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.
- H. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

- A. Operation and Maintenance Documentation Directory: Prepare a separate manual that provides an organized reference to emergency, operation, and maintenance manuals.
- B. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

- C. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
 - 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
 - 2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.
- D. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
 - 1. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.
- E. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.
 - 1. Do not use original project record documents as part of operation and maintenance manuals.
 - 2. Comply with requirements of newly prepared record Drawings in Section 220180 "Project Record Documents."

This Page Left Intentionally Blank

SECTION 220190 - DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for instructing Owner's personnel, including the following:
 - 1. Demonstration of operation of systems, subsystems, and equipment.
 - 2. Training in operation and maintenance of systems, subsystems, and equipment.
 - 3. Demonstration and training video recordings.

1.3 INFORMATIONAL SUBMITTALS

- A. Instruction Program: Submit outline of instructional program for demonstration and training, including a list of training modules and a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module.
 - 1. Indicate proposed training modules using manufacturer-produced demonstration and training video recordings for systems, equipment, and products in lieu of video recording of live instructional module.
- B. Attendance Record: For each training module, submit list of participants and length of instruction time.

1.4 CLOSEOUT SUBMITTALS

- A. Demonstration and Training Video Recordings: Submit two copies within seven days of end of each training module.
 - 1. Identification: On each copy, provide an applied label with the following information:
 - a. Name of Project.
 - b. Name and address of videographer.
 - c. Name of Engineer.
 - d. Name of Construction Manager.
 - e. Name of Contractor.
 - f. Date of video recording.

- 2. Transcript: Prepared in PDF electronic format. Include a cover sheet with same label information as the corresponding video recording and a table of contents with links to corresponding training components. Include name of Project and date of video recording on each page.
- 3. At completion of training, submit complete training manual(s) for Owner's use in PDF electronic file format on flash drive.

1.5 COORDINATION

- A. Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations and to ensure availability of Owner's personnel.
- B. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
- C. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by Engineer.

PART 2 - PRODUCTS

2.1 INSTRUCTION PROGRAM

- A. Program Structure: Develop an instruction program that includes individual training modules for each system and for equipment not part of a system, as required by individual Specification Sections.
- B. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following as applicable to the system, equipment, or component:
 - 1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Performance and design criteria if Contractor is delegated design responsibility.
 - c. Operating standards.
 - d. Regulatory requirements.
 - e. Equipment function.
 - f. Operating characteristics.
 - g. Limiting conditions.
 - h. Performance curves.
 - 2. Documentation: Review the following items in detail:
 - a. Operations manuals.
 - b. Maintenance manuals.
 - c. Project record documents.
 - d. Identification systems.

- e. Warranties and bonds.
- f. Maintenance service agreements and similar continuing commitments.
- 3. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.
 - c. Routine and normal operating instructions.
 - d. Regulation and control procedures.
 - e. Control sequences.
 - f. Safety procedures.
 - g. Instructions on stopping.
 - h. Normal shutdown instructions.
 - i. Operating procedures for emergencies.
 - j. Operating procedures for system, subsystem, or equipment failure.
 - k. Seasonal and weekend operating instructions.
 - 1. Required sequences for electric or electronic systems.
 - m. Special operating instructions and procedures.
- 4. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.
 - c. Noise and vibration adjustments.
 - d. Economy and efficiency adjustments.
- 5. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 6. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.
 - g. Instruction on use of special tools.
- 7. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.
 - e. Review of spare parts needed for operation and maintenance.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a training manual organized in coordination with requirements in Section 220170 "Operation and Maintenance Data."
- B. Set up instructional equipment at instruction location.

3.2 INSTRUCTION

- A. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - 1. Engineer will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.
 - 2. Owner will furnish an instructor to describe Owner's operational philosophy.
 - 3. Owner will furnish Contractor with names and positions of participants.
- B. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.
 - 1. Schedule training with Owner, through Engineer, with at least seven days' advance notice.
- C. Training Location and Reference Material: Conduct training on-site in the completed and fully operational facility using the actual equipment in-place. Conduct training using final operation and maintenance data submittals.
- D. Cleanup: Collect used and leftover educational materials and give to Owner. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

3.3 DEMONSTRATION AND TRAINING VIDEO RECORDINGS

- A. General: Engage a qualified commercial videographer to record demonstration and training video recordings. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice.
 - 1. At beginning of each training module, record each chart containing learning objective and lesson outline.
- B. Video: Provide minimum 640 x 480 video resolution converted to .mp4 format file type , on electronic media.
 - 1. Electronic Media: Read-only format compact disc acceptable to Owner, with commercial-grade graphic label.

- 2. File Hierarchy: Organize folder structure and file locations according to project manual table of contents. Provide complete screen-based menu.
- 3. File Names: Utilize file names based upon name of equipment generally described in video segment, as identified in Project specifications.
- 4. Contractor and Installer Contact File: Using appropriate software, create a file for inclusion on the Equipment Demonstration and Training DVD that describes the following for each Contractor involved on the Project, arranged according to Project table of contents:
 - a. Name of Contractor/Installer.
 - b. Business address.
 - c. Business phone number.
 - d. Point of contact.
 - e. E-mail address.
- C. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to adequately cover area of demonstration and training. Display continuous running time.
 - 1. Film training session(s) in segments not to exceed 15 minutes.
 - a. Produce segments to present a single significant piece of equipment per segment.
 - b. Organize segments with multiple pieces of equipment to follow order of Project Manual table of contents.
 - c. Where a training session on a particular piece of equipment exceeds 15 minutes, stop filming and pause training session. Begin training session again upon commencement of new filming segment.
- D. Light Levels: Verify light levels are adequate to properly light equipment. Verify equipment markings are clearly visible prior to recording.
 - 1. Furnish additional portable lighting as required.
- E. Narration: Describe scenes on video recording by audio narration by microphone while or dubbing audio narration off-site after video recording is recorded. Include description of items being viewed.
- F. Transcript: Provide a transcript of the narration. Display images and running time captured from videotape opposite the corresponding narration segment.
- G. Preproduced Video Recordings: Provide video recordings used as a component of training modules in same format as recordings of live training.

This Page Left Intentionally Blank

SECTION 220516 - EXPANSION FITTINGS AND LOOPS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Flexible-hose packless expansion joints.
 - 2. Rubber packless expansion joints.

1.3 PERFORMANCE REQUIREMENTS

- A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.
- B. Capability: Products to absorb 200 percent of maximum axial movement between anchors.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of expansion joint, from manufacturer.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For expansion joints to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 PACKLESS EXPANSION JOINTS

A. Flexible-Hose Packless Expansion Joints:

- 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Metraflex, Inc.; SST (2-inch and smaller), MLP (2.5-inch and larger), BBS (Bronze) or comparable product by one of the following:
 - a. <u>Flex-Hose Co., Inc</u>.
 - b. <u>Flexicraft Industries</u>.
- 2. Flexible Hose: Corrugated-metal inner hoses and braided outer sheaths.
- 3. Expansion Joints for Copper Tubing NPS 2 (DN 50) and Smaller: Copper-alloy fittings with solder-joint end connections.
 - a. Bronze hoses and single-braid bronze sheaths with 450 psig at 70 deg F (3100 kPa at 21 deg C) and 340 psig at 450 deg F (2340 kPa at 232 deg C) ratings.
- 4. Expansion Joints for Steel Piping NPS 2 (DN 50) and Smaller: Stainless-steel fittings with threaded end connections.
 - a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 450 psig at 70 deg F (3100 kPa at 21 deg C) and 325 psig at 600 deg F (2250 kPa at 315 deg C) ratings.
- B. Rubber Packless Expansion Joints:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Metraflex, Inc.; Double Cablesphere DSRC or comparable product by one of the following:
 - a. Amber/Booth Company, Inc.; a div. of Vibration Isolation Products of Texas, Inc.
 - b. <u>Mason Industries, Inc.; Mercer Rubber Co</u>.
 - 2. Standards: ASTM F 1123 and FSA's "Technical Handbook: Non-Metallic Expansion Joints and Flexible Pipe Connectors."
 - 3. Material: Fabric-reinforced rubber complying with FSA-NMEJ-703.
 - 4. Spherical Type: Multiple spheres with external cables.
 - 5. Minimum Pressure Rating for NPS 1-1/2 to NPS 4 (DN 40 to DN 100): 150 psig (1035 kPa) at 220 deg F (104 deg C).
 - 6. Material for Fluids Containing Gas, Hydrocarbons, or Oil: Buna-N.
 - 7. Material for Water: EPDM.
 - 8. End Connections: Full-faced, integral steel flanges with steel retaining rings.

PART 3 - EXECUTION

3.1 EXPANSION-JOINT INSTALLATION

- A. Install expansion joints of sizes matching sizes of piping in which they are installed.
- B. Install rubber packless expansion joints according to FSA-NMEJ-702.

SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal fittings.
 - 3. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

2.2 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.3 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. Install sleeves in concrete floors and concrete walls as new slabs and walls are constructed.
 - 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 - 2. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level.
 - 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- C. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."
- D. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6 (DN 150) : Galvanized-steel-pipe sleeves.
 - 2. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 4 (DN 100) : Sleeve-seal fittings.
 - 3. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6 (DN 150) : Galvanized-steel-pipe sleeves.
 - 4. Interior Partitions:
 - a. Piping Smaller Than NPS 6 (DN 150) : Galvanized-steel-pipe sleeves.

This Page Left Intentionally Blank

SECTION 220518 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

ESCUTCHEONS FOR PLUMBING PIPING

- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, castbrass type with polished, chrome-plated finish.
 - e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 - f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with roughbrass finish.
 - g. Bare Piping in Equipment Rooms: One-piece, cast-brass type with rough-brass finish.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

SECTION 220519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Liquid-in-glass thermometers.
 - 2. Thermowells.
 - 3. Dial-type pressure gages.
 - 4. Gage attachments.
- B. Related Sections:
 - 1. Section 221116 "Domestic Water Piping" for water meters inside the building.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage, from manufacturer.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS

- A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Trerice H.O. Co.; BX9 or comparable product by one of the following:

METERS AND GAGES FOR PLUMBING PIPING

- a. <u>Weiss Instruments, Inc</u>.
- b. <u>Winters Instruments U.S</u>.
- 2. Standard: ASME B40.200.
- 3. Case: Cast aluminum ; 9-inch (229-mm) nominal size unless otherwise indicated.
- 4. Case Form: Adjustable angle unless otherwise indicated.
- 5. Tube: Glass with magnifying lens and blue or red organic liquid.
- 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F (deg C).
- 7. Window: Glass
- 8. Stem: Aluminum Brass and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
- 9. Connector: 1-1/4 inches (32 mm), with ASME B1.1 screw threads.
- 10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 THERMOWELLS

- A. Thermowells:
 - 1. Standard: ASME B40.200.
 - 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 - 3. Material for Use with Copper Tubing: CNR (copper nickel 90-10) .
 - 4. Material for Use with Steel Piping: CSA.
 - 5. Type: Stepped shank unless straight or tapered shank is indicated.
 - 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, (DN 15, DN 20, or NPS 25,) ASME B1.20.1 pipe threads.
 - 7. Internal Threads: 1/2, 3/4, and 1 inch (13, 19, and 25 mm), with ASME B1.1 screw threads.
 - 8. Bore: Diameter required to match thermometer bulb or stem.
 - 9. Insertion Length: Length required to match thermometer bulb or stem.
 - 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 - 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin .

2.3 PRESSURE GAGES

- A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Trerice H.O. Co.; 600CB or comparable product by one of the following:
 - a. <u>Ashcroft Inc</u>.
 - b. <u>Miljoco Corporation</u>.
 - c. <u>Weiss Instruments, Inc</u>.

- d. <u>Winters Instruments U.S</u>.
- 2. Standard: ASME B40.100.
- 3. Case: Solid-front, pressure relief type(s); cast aluminum ; 4-1/2-inch (114-mm) nominal diameter. Provide weatherproofed case for outdoor installations; provide back flange kit for surface mount applications.
- 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
- 5. Pressure Connection: Brass, with NPS 1/4 (DN 8) , ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
- 6. Movement: Mechanical, with link to pressure element and connection to pointer.
- 7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi (kPa).
- 8. Pointer: Dark-colored metal.
- 9. Window: Glass .
- 10. Ring: Stainless steel.
- 11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.4 GAGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with NPS 1/4 (DN 8) , ASME B1.20.1 pipe threads and porous-metal-type surge-dampening device. Include extension for use on insulated piping.
- B. Valves: Brass ball, with NPS 1/4 (DN 8), ASME B1.20.1 pipe threads.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install thermowells with socket extending a minimum of 2 inches (51 mm) into fluid and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
- F. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
- G. Install valve and snubber in piping for each pressure gage for fluids.
- H. Install test plugs in piping tees.
- I. Install thermometers in the following locations:

- 1. Inlet and outlet of each water heater.
- J. Install pressure gages in the following locations:
 - 1. Building water service entrance into building.
 - 2. Inlet and outlet of each pressure-reducing valve.
 - 3. Suction and discharge of each domestic water pump.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

- A. Thermometers at inlet and outlet of each domestic water heater shall be the following:
 - 1. Industrial-style, liquid-in-glass type.
- B. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Domestic Cold-Water Piping: 0 to 150 deg F (Minus 20 to plus 70 deg C).
- B. Scale Range for Domestic Hot-Water Piping: 0 to 250 deg F (0 to 150 deg C).

3.6 PRESSURE-GAGE SCHEDULE

- A. Pressure gages at discharge of each water service into building shall be the following:
 - 1. Solid-front, pressure-relief , direct -mounted, metal case.
- B. Pressure gages at inlet and outlet of each water pressure-reducing valve shall be the following:
 - 1. Solid-front, pressure-relief, direct -mounted, metal case.
- C. Pressure gages at suction and discharge of each domestic water pump shall be the following:
 - 1. Solid-front, pressure-relief , direct -mounted, metal case.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

- A. Scale Range for Water Service Piping: 0 to 160 psi (0 to 1100 kPa).
- B. Scale Range for Domestic Water Piping: 0 to 160 psi (0 to 1100 kPa).

This Page Left Intentionally Blank

SECTION 220523 - GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bronze angle valves.
 - 2. Bronze ball valves.
 - 3. Iron, single-flange butterfly valves.
 - 4. Bronze swing check valves.
 - 5. Iron swing check valves.
 - 6. Bronze globe valves.
- B. Related Sections:
 - 1. Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
 - 2. Section 221116 "Domestic Water Piping" for valves applicable only to this piping.
 - 3. Section 221319 "Sanitary Waste Piping Specialties" for valves applicable only to this piping.
 - 4. Section 221423 "Storm Drainage Piping Specialties" for valves applicable only to this piping.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NRS: Nonrising stem.
- D. RS: Rising stem.
- E. SWP: Steam working pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.1 for power piping valves.
 - 3. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to valve schedule articles for applications of valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:
 - 1. Handwheel: For valves other than quarter-turn types.
 - 2. Handlever: For quarter-turn valves NPS 6 (DN 150) and smaller.
- E. Valves in Insulated Piping: With 2-inch (50-mm) stem extensions and the following features:
 - 1. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
 - 2. Butterfly Valves: With extended neck.
- F. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 - 2. Solder Joint: With sockets according to ASME B16.18.
 - 3. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE ANGLE VALVES

- A. Class 150, Bronze Angle Valves with Nonmetallic Disc:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following :
 - a. <u>Hammond Valve</u>.
 - b. <u>Milwaukee Valve Company</u>.
 - c. <u>NIBCO INC</u>.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 2.
 - b. CWP Rating: 300 psig (2070 kPa).
 - c. Body Material: ASTM B 62, bronze with integral seat and union-ring bonnet.
 - d. Ends: Threaded.
 - e. Stem: Bronze.
 - f. Disc: PTFE or TFE.
 - g. Packing: Asbestos free.
 - h. Handwheel: Malleable iron.

2.3 BRONZE BALL VALVES

- A. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following :
 - a. <u>Conbraco Industries, Inc.; Apollo Valves</u>.
 - b. <u>Milwaukee Valve Company</u>.
 - c. <u>NIBCO INC</u>.
 - d. <u>Watts Regulator Co.; a division of Watts Water Technologies, Inc</u>.
 - 2. Description:

- a. Standard: MSS SP-110.
- b. SWP Rating: 150 psig (1035 kPa).
- c. CWP Rating: 600 psig (4140 kPa).
- d. Body Design: Two piece.
- e. Body Material: Bronze.
- f. Ends: Threaded.
- g. Seats: PTFE or TFE.
- h. Stem: Stainless steel.
- i. Ball: Stainless steel, vented.
- j. Port: Full.

2.4 IRON, SINGLE-FLANGE BUTTERFLY VALVES

- A. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum-Bronze Disc:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following :
 - a. <u>Milwaukee Valve Company</u>.
 - b. <u>NIBCO INC</u>.
 - c. <u>Watts Regulator Co.; a division of Watts Water Technologies, Inc.</u>
 - 2. Description:
 - a. Standard: MSS SP-67, Type I.
 - b. CWP Rating: 200 psig (1380 kPa).
 - c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 - d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 - e. Seat: EPDM.
 - f. Stem: One- or two-piece stainless steel.
 - g. Disc: Aluminum bronze.

2.5 BRONZE SWING CHECK VALVES

- A. Class 150, Bronze Swing Check Valves with Nonmetallic Disc:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following :
 - a. <u>Milwaukee Valve Company</u>.
 - b. <u>NIBCO INC</u>.
 - c. <u>Watts Regulator Co.; a division of Watts Water Technologies, Inc.</u>
 - 2. Description:
 - a. Standard: MSS SP-80, Type 4.
 - b. CWP Rating: 300 psig (2070 kPa).
 - c. Body Design: Horizontal flow.

- d. Body Material: ASTM B 62, bronze.
- e. Ends: Threaded.
- f. Disc: PTFE or TFE.

2.6 IRON SWING CHECK VALVES

- A. Class 125, Iron Swing Check Valves with Metal Seats:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following :
 - a. <u>Milwaukee Valve Company</u>.
 - b. <u>NIBCO INC</u>.
 - c. <u>Watts Regulator Co.; a division of Watts Water Technologies, Inc.</u>
 - 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. CWP Rating: 200 psig (1380 kPa).
 - c. Body Design: Clear or full waterway.
 - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - e. Ends: Flanged.
 - f. Trim: Bronze.
 - g. Gasket: Asbestos free.

2.7 BRONZE GLOBE VALVES

- A. Class 150, Bronze Globe Valves with Nonmetallic Disc:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following :
 - a. <u>Milwaukee Valve Company</u>.
 - b. <u>NIBCO INC</u>.
 - c. <u>Watts Regulator Co.; a division of Watts Water Technologies, Inc.</u>
 - 2. Description:
 - a. Standard: MSS SP-80, Type 2.
 - b. CWP Rating: 300 psig (2070 kPa).
 - c. Body Material: ASTM B 62, bronze with integral seat and union-ring bonnet.
 - d. Ends: Threaded.
 - e. Stem: Bronze.
 - f. Disc: PTFE or TFE.
 - g. Packing: Asbestos free.
 - h. Handwheel: Malleable iron.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball or butterfly valves.
 - 2. Butterfly Valve Dead-End Service: Single-flange (lug) type.
 - 3. Throttling Service: Globe or angle valves.
 - 4. Pump-Discharge Check Valves:

- a. NPS 2 (DN 50) and Smaller: Bronze swing check valves with nonmetallic disc.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 (DN 50) and Smaller: Threaded ends except where solderjoint valve-end option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Steel Piping, NPS 2 (DN 50) and Smaller: Threaded ends.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 2 (DN 50) and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Bronze Angle Valves: Class 150, nonmetallic disc.
 - 3. Ball Valves: Two piece, full port, bronze with stainless-steel trim.
 - 4. Bronze Swing Check Valves: Class 150, nonmetallic disc.
 - 5. Bronze Globe Valves: Class 150, nonmetallic disc.
- B. Pipe NPS 2-1/2 (DN 65) and Larger:
 - 1. Iron Valves, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): May be provided with threaded ends instead of flanged ends.
 - 2. Iron, Single-Flange Butterfly Valves: 200 CWP, EPDM seat, aluminum-bronze disc.
 - 3. Iron Swing Check Valves: Class 125, metal seats.

3.6 SANITARY-WASTE AND STORM-DRAINAGE VALVE SCHEDULE

- A. Pipe NPS 2 (DN 50) and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Bronze Angle Valves: Class 150, nonmetallic disc.
 - 3. Ball Valves: Two piece, full port, bronze with stainless-steel trim.
 - 4. Bronze Swing Check Valves: Class 150, nonmetallic disc.
 - 5. Bronze Globe Valves: Class 150, nonmetallic disc.

END OF SECTION 220523

This Page Left Intentionally Blank

SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Fastener systems.
 - 5. Pipe positioning systems.
 - 6. Equipment supports.
- B. Related Sections:
 - 1. Section 220516 "Expansion Fittings and Loops for Plumbing Piping" for pipe guides and anchors.
 - 2. Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for vibration isolation devices.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.

- 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
- 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel .
- B. Copper Pipe Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel .

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - a. <u>Cooper B-Line, Inc</u>.
 - b. <u>Flex-Strut Inc</u>.
 - c. <u>Unistrut Corporation; Tyco International, Ltd</u>.
 - 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 - 3. Standard: MFMA-4.
 - 4. Channels: Continuous slotted steel channel with inturned lips.
 - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel .
 - 7. Metallic Coating: Electroplated zinc indoors and Hot-dipped galvanized outdoors .

2.4 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.6 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbonsteel shapes.

2.7 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches (100 mm) thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.

- 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- E. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.
- F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- M. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use clamp sized to match OD of insulation.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm).

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 099113.1 "Exterior Painting for Mechanical and Electrical Systems."

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.
- G. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 2. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 (DN 15 to DN 600) if little or no insulation is required.
 - 3. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- H. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24 (DN 24 to DN 600).
- I. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
- J. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

- K. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- L. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
- M. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529

This Page Left Intentionally Blank

SECTION 220548 - VIBRATION CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Isolation pads.
 - 2. Isolation mounts.
 - 3. Elastomeric hangers.

1.3 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.

1.4 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Amber/Booth Company, Inc.
 - 2. Kinetics Noise Control.
 - 3. Mason Industries.
- B. Pads : Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.

- 1. Resilient Material: Oil- and water-resistant neoprene .
- C. Mounts : Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.
 - 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - 2. Neoprene: Shock-absorbing materials compounded according to the standard for bridgebearing neoprene as defined by AASHTO.
- D. Elastomeric Hangers : Single or double-deflection type, fitted with molded, oil-resistant elastomeric isolator elements bonded to steel housings with threaded connections for hanger rods. Color-code or otherwise identify to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

END OF SECTION 220548

SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Pipe labels.
 - 3. Valve tags.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- C. Valve numbering scheme.
- D. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:

- 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch (3.2 mm) thick, and having predrilled holes for attachment hardware.
- 2. Letter Color: White .
- 3. Background Color: Black
- 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
- 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
- 6. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- 7. Fasteners: Stainless-steel rivets.
- 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number .
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch (A4) bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches (38 mm)high.

2.3 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch (6.4-mm) letters for piping system abbreviation and 1/2-inch (13-mm) numbers.
 - 1. Tag Material: Brass, 0.032-inch (0.8-mm) minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link or beaded chain; or S-hook .
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch (A4) bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve

(room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet (15 m) along each run. Reduce intervals to 25 feet (7.6 m) in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- B. Pipe Label Color Schedule:
 - 1. Domestic Cold Water Piping:
 - a. Background Color: Blue.
 - b. Letter Color: White.
 - 2. Domestic Hot Water Piping:
 - a. Background Color: Red.
 - b. Letter Color: White.

- 3. Sanitary Waste and Storm Drainage Piping:
 - a. Background Color: Black.
 - b. Letter Color: White.

3.4 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Cold Water: 1-1/2 inches (38 mm), round.
 - b. Hot Water: 1-1/2 inches (38 mm), round.
 - c. Sanitary Waste: 1-1/2 inches (38 mm), round.
 - 2. Valve-Tag Color:
 - a. Cold Water: Natural.
 - b. Hot Water: Natural.
 - c. Sanitary Waste: Natural.

END OF SECTION 220553

SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following plumbing piping services:
 - 1. Domestic hot-water piping.
 - 2. Domestic recirculating hot-water piping.
 - 3. Supplies and drains for handicap-accessible lavatories and sinks.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
- C. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 - 1. Supply and Drain Protective Shielding Guards: ICC A117.1.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. Aeroflex USA, Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. <u>K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS</u>.
- E. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. Johns Manville; Micro-Lok.
 - b. Knauf Insulation; 1000-Degree Pipe Insulation.
 - c. <u>Owens Corning; Fiberglas Pipe Insulation</u>.

2. Type I, 850 Deg F (454 Deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote</u>.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>Aeroflex USA, Inc.; Aeroseal</u>.
 - b. <u>Armacell LLC; Armaflex 520 Adhesive</u>.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75.
 - d. K-Flex USA; R-373 Contact Adhesive.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> Company; CP-127.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. <u>Mon-Eco Industries, Inc.; 22-25</u>.
 - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

- 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. ASJ Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. <u>Products</u>: Subject to compliance with requirements,] provide one of the following :
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> Company; CP-82.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-20.
 - d. <u>Mon-Eco Industries, Inc.; 22-25</u>.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- E. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>Dow Corning Corporation; 739, Dow Silicone</u>.
 - b. Johns Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. <u>P.I.C. Plastics, Inc.; Welding Adhesive</u>.
 - d. <u>Speedline Corporation; Polyco VP Adhesive</u>.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :

- a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
- b. <u>Vimasco Corporation; 749</u>.
- 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
- 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
- 5. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-10</u>.
 - b. Eagle Bridges Marathon Industries; 550.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.
 - d. <u>Mon-Eco Industries, Inc.; 55-50</u>.
 - e. <u>Vimasco Corporation; WC-1/WC-5</u>.
 - 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms (1.2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: 60 percent by volume and 66 percent by weight.
 - 5. Color: White.

2.5 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-50 AHV2</u>.
 - b. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-36.
 - c. <u>Vimasco Corporation; 713 and 714</u>.
 - 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
 - 4. Service Temperature Range: 0 to plus 180 deg F (Minus 18 to plus 82 deg C).
 - 5. Color: White.

2.6 SEALANTS

- A. Metal Jacket Flashing Sealants:
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-76</u>.
 - b. <u>Eagle Bridges Marathon Industries; 405</u>.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 - d. <u>Mon-Eco Industries, Inc.; 44-05</u>.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: Aluminum.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. ASJ Flashing Sealants and PVC Jacket Flashing Sealants:
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-76</u>.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: White.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. (68 g/sq. m) with a thread count of 10 strands by 10 strands/sq. in. (4 strands by 4 strands/sq. mm) for covering pipe and pipe fittings.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; Chil-Glas Number 10</u>.

2.9 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Johns Manville; Zeston.
 - b. <u>P.I.C. Plastics, Inc.; FG Series</u>.
 - c. <u>Proto Corporation; LoSmoke</u>.
 - d. <u>Speedline Corporation; SmokeSafe</u>.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: White .
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
- C. Metal Jacket:
 - 1. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 2.5-mil- (0.063-mm-) thick polysurlyn.
 - d. Moisture Barrier for Outdoor Applications: 2.5-mil- (0.063-mm-) thick polysurlyn.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

- 2.10 TAPES
 - A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Width: 3 inches (75 mm).
 - 2. Thickness: 11.5 mils (0.29 mm).
 - 3. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
 - B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Width: 2 inches (50 mm).
 - 2. Thickness: 6 mils (0.15 mm).
 - 3. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
 - 4. Elongation: 500 percent.
 - 5. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.

2.11 SECUREMENTS

- A. Bands:
 - 1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 ; 0.015 inch (0.38 mm) thick, 1/2 inch (13 mm) wide with wing seal .
 - 2. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 1/2 inch (13 mm) wide with wing seal.
- B. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.

2.12 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Pipe Covers:
 - 1. Description: Manufactured plastic wraps for covering plumbing fixture hot- and coldwater supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.

- 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. On below ambient systems provide continuous vapor barrier.
- B. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- C. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- D. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- E. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- F. Install multiple layers of insulation with longitudinal and end seams staggered.
- G. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- H. Keep insulation materials dry during application and finishing.
- I. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- J. Install insulation with least number of joints practical.
- K. On below-ambient systems, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.

- L. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- M. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 3. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- N. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 - 4. Seal jacket to wall flashing with flashing sealant.
- B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- D. Insulation Installation at Floor Penetrations:

- 1. Pipe: Install insulation continuously through floor penetrations.
- 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - 8. For services not specified to receive a field-applied jacket except for flexible elastomeric, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
 - 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.

- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
- B. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- C. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

- A. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- B. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.9 FINISHES

- A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- B. Color: Final color as selected by Engineer. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless-steel jackets.

3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

3.11 INDOOR PIPING INSULATION SCHEDULE

- A. Domestic Hot and Recirculated Hot Water:
 - 1. NPS 1-1/4 (DN 32) and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 1/2 inch (38 mm) thick.
 - 2. NPS 1-1/2 (DN 40) and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 1/2 inch (38 mm) thick.
- B. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Manufactured Protective Shielding Pipe Covers.
- C. Floor Drains, Traps, and Sanitary Drain Piping within 10 Feet (3 m) of Drain Receiving Condensate and Equipment Drain Water below 60 Deg F (16 Deg C):
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inch (25 mm) thick.
- D. Piping Indicated for Noise Containment:
 - 1. Services not Specified Above, All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 1/2 inch (38 mm) thick.
 - 2. Other Services: Same as specified above.

3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. None.
- D. Piping, Exposed:
 - 1. Aluminum, Corrugated: 0.016 inch (0.41 mm) thick.

END OF SECTION 220719

PLUMBING PIPING INSULATION

SECTION 220800 - COMMISSIONING OF PLUMBING SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes commissioning process requirements for plumbing systems, assemblies, and equipment.
- B. The Plumbing (Division 22) Contractor's responsibilities are defined in this section and Section 019113 of the specifications. These responsibilities apply to all specialty Sub-Contractors and major equipment Suppliers within Division 22. Each Contractor and Supplier shall review Section 019113, and their bids shall include for carrying out the Work described, as it applies to each Section within Division 22 specifications, individually and collectively.
- C. Related Sections:
 - 1. Division 01 Section "General Commissioning Requirements" for general commissioning process requirements.

1.3 DEFINITIONS

- A. Commissioning Plan: A document that outlines the organization, schedule, allocation of resources, and documentation requirements of the commissioning process.
- B. CxA: Commissioning Authority.
- C. FPT: Functional Performance Test. Test of dynamic function and operation of equipment and systems. Systems are tested under various modes, such as during low cooling or heating loads, high loads, component failures, unoccupied, varying outside air temperatures, life safety conditions, power failure, etc. Systems are run through all specified sequences of operation.
- D. SVC: System Verification Checklist. A list of static inspections and elementary component tests that verify proper installation of equipment (e.g., belt tension, oil levels, labels affixed, gauges in place, sensors calibrated, etc.).
- E. Systems, Subsystems, Equipment, and Components: Where these terms are used together or separately, they shall mean "as-built" systems, subsystems, equipment, and components.

1.4 INFORMATIONAL SUBMITTALS

- A. Certificates of readiness.
- B. Certificates of completion of System Verification Checklists (SVC).

COMMISSIONING OF PLUMBING SYSTEMS

C. Certificates of completion of controls point-to-point checkout.

1.5 PLUMBING CONTRACTOR'S RESPONSIBILITIES

- A. Ensure that all specialty Sub-Contractors within Division 22 execute their commissioning responsibilities according to the Contract Documents and schedule.
- B. Perform commissioning functional performance tests (FPT) at the direction of the CxA.
- C. Participate in plumbing systems, assemblies, equipment, and component maintenance orientation and training as directed by the CxA.

1.6 COMMISSIONING DOCUMENTATION

- A. Provide the following information to the CxA for inclusion in the commissioning plan:
 - 1. Identification of installed systems, assemblies, equipment, and components including design changes that occurred during the construction phase.
 - 2. Certificate of completion certifying that System Verification Checklists have been completed.
 - 3. Certificate of readiness certifying that plumbing systems, subsystems, equipment, and associated controls are ready for testing.
 - 4. Test and inspection reports and certificates.
 - 5. Corrective action documents.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TESTING PREPARATION / SYSTEM VERIFICATION CHECKLISTS

- A. Certify that plumbing systems, subsystems, and equipment have been installed, calibrated, and started and are operating according to the Contract Documents.
- B. Certify that plumbing instrumentation and control systems have been completed and calibrated, that they are operating according to the Contract Documents, and that pretest set points have been recorded.
- C. Set systems, subsystems, and equipment into operating mode to be tested (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle, emergency power, and alarm conditions).
- D. Inspect and verify the position of each device and interlock identified on checklists.
- E. Check safety cutouts, alarms, and interlocks.
- F. Testing Instrumentation: Install measuring instruments and logging devices to record test data as directed by the CxA.
3.2 GENERAL TESTING REQUIREMENTS

- A. Provide technicians, instrumentation, and tools to perform commissioning test at the direction of the CxA.
- B. Scope of plumbing testing shall include entire domestic hot water and pressure booster pump installation. Testing shall include measuring capacities and effectiveness of operational and control functions.
- C. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of building automation system controllers and sensors.
- D. The CxA shall prepare detailed testing plans, procedures, and checklists for plumbing systems, subsystems, and equipment.
- E. If tests cannot be completed because of a deficiency outside the scope of the plumbing system, document the deficiency and report it to the Owner. After deficiencies are resolved, reschedule tests.

3.3 PLUMBING SYSTEMS, SUBSYSTEMS, AND EQUIPMENT TESTING PROCEDURES

- A. Pipe system cleaning and hydrostatic tests, treatment requirements are specified in Division 22 piping Sections. Plumbing Contractor shall prepare a pipe system cleaning, flushing, and hydrostatic testing plan. Provide cleaning, testing, and treating plan and final reports to the CxA. Plan shall include the following:
 - 1. Sequence of testing and testing procedures for each section of pipe to be tested, identified by pipe zone or sector identification marker. Markers shall be keyed to Drawings for each pipe sector, showing the physical location of each designated pipe test section. Drawings keyed to pipe zones or sectors shall be formatted to allow each section of piping to be physically located and identified when referred to in pipe system cleaning and hydrostatic testing.
 - 2. Description of equipment for flushing operations.
 - 3. Minimum flushing water velocity.
 - 4. Tracking checklist for managing and ensuring that all pipe sections have been cleaned, and hydrostatically tested.

END OF SECTION 220800

This Page Left Intentionally Blank

SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.
 - 2. Encasement for piping.

1.3 ACTION SUBMITTALS

A. Product Data: For transition fittings and dielectric fittings.

1.4 INFORMATIONAL SUBMITTALS

- A. System purging and disinfecting activities report.
- B. Field quality-control reports.

1.5 FIELD CONDITIONS

- A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 - 1. Notify Owner no fewer than five days in advance of proposed interruption of water service.
 - 2. Do not interrupt water service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14 and NSF 61. Plastic piping components shall be marked with "NSF-pw."

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type L (ASTM B 88M, Type B) water tube, drawn temper.
- B. Soft Copper Tube: ASTM B 88, Type K (ASTM B 88M, Type A) water tube, annealed temper.
- C. Wrought-Copper, Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
- D. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
- E. Copper Unions:
 - 1. MSS SP-123.
 - 2. Cast-copper-alloy, hexagonal-stock body.
 - 3. Ball-and-socket, metal-to-metal seating surfaces.
 - 4. Solder-joint or threaded ends.

2.3 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials:
 - 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch (3.2 mm) thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 - 2. Full-face or ring type unless otherwise indicated.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys.
- D. Flux: ASTM B 813, water flushable.
- E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for generalduty brazing unless otherwise indicated.

2.4 ENCASEMENT FOR PIPING

- A. Standard: ASTM A 674 or AWWA C105/A21.5.
- B. Form: Sheet or tube.
- C. Color: Black.

2.5 TRANSITION FITTINGS

- A. General Requirements:
 - 1. Same size as pipes to be joined.
 - 2. Pressure rating at least equal to pipes to be joined.
 - 3. End connections compatible with pipes to be joined.
- B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
- C. Sleeve-Type Transition Coupling: AWWA C219.
- D. Plastic-to-Metal Transition Fittings:
 - 1. Description:
 - a. CPVC or PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions.
 - b. One end with threaded brass insert and one solvent-cement-socket end.
- E. Plastic-to-Metal Transition Unions:
 - 1. Description:
 - a. CPVC or PVC four-part union.
 - b. Brass or stainless-steel threaded end.
 - c. Solvent-cement-joint or threaded plastic end.
 - d. Rubber O-ring.
 - e. Union nut.

2.6 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. Standard: ASSE 1079.
 - 2. Pressure Rating: 150 psig (1035 kPa).
 - 3. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric-Flange Insulating Kits:
 - 1. Nonconducting materials for field assembly of companion flanges.
 - 2. Pressure Rating: 150 psig (1035 kPa).
 - 3. Gasket: Neoprene or phenolic.
 - 4. Bolt Sleeves: Phenolic or polyethylene.
 - 5. Washers: Phenolic with steel backing washers.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- C. Install underground copper tube in PE encasement according to ASTM A 674 or AWWA C105/A21.5.
- D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 221119 "Domestic Water Piping Specialties."
- E. Install shutoff valve immediately upstream of each dielectric fitting.
- F. Install water-pressure-reducing valves downstream from shutoff valves if static service pressure exceeds 60 psig. Comply with requirements for pressure-reducing valves in Section 221119 "Domestic Water Piping Specialties."
- G. Install domestic water piping level without pitch and plumb.
- H. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- I. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- J. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- K. Install piping to permit valve servicing.
- L. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
- M. Install piping free of sags and bends.
- N. Install fittings for changes in direction and branch connections.

- O. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- P. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping."
- Q. Install thermometers on outlet piping from each water heater. Comply with requirements for thermometers in Section 220519 "Meters and Gages for Plumbing Piping."
- R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- S. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- T. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.
- E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
- F. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
- G. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 TRANSITION FITTING INSTALLATION

- A. Install transition couplings at joints of dissimilar piping.
- B. Transition Fittings in Underground Domestic Water Piping:
 - 1. Fittings for NPS 1-1/2 (DN 40) and Smaller: Fitting-type coupling.
 - 2. Fittings for NPS 2 (DN 50) and Larger: Sleeve-type coupling.
- C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 (DN 50) and Smaller: Plastic-to-metal transition fittings or unions.

3.5 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 (DN 50) and Smaller: Use dielectric unions.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4 (DN 65 to DN 100) : Use dielectric flange kits.

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hanger, support products, and installation in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Vertical Piping: MSS Type 8, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. MSS Type 1, adjustable, steel clevis hangers.
 - 3. Multiple, Straight, Horizontal Piping Runs: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
- B. Support vertical piping and tubing at base and at each floor.
- C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch (10 mm).
- D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 (DN 20) and Smaller: 60 inches (1500 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 1 and NPS 1-1/4 (DN 25 and DN 32): 72 inches (1800 mm) with 3/8-inch (10-mm) rod.
 - 3. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): 96 inches (2400 mm) with 3/8-inch (10-mm) rod.
 - 4. NPS 2-1/2 (DN 65): 108 inches (2700 mm) with 1/2-inch (13-mm) rod.
- E. Install supports for vertical copper tubing every 10 feet (3 m).

F. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 - 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 - 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
 - 4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 (DN 65) and larger.

3.8 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Piping Inspections:
 - a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 - 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.

- c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
- d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- 2. Piping Tests:
 - a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 - b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 - c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - d. Cap and subject piping to static water pressure of 50 psig (345 kPa) above operating pressure but not less than 150 psig (1034 kPa), without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
 - f. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.10 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 5. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 6. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.11 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.

- 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm (50 mg/L) of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm (200 mg/L) of chlorine. Isolate and allow to stand for three hours.
 - c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 - d. Repeat procedures if biological examination shows contamination.
 - e. Submit water samples in sterile bottles to authorities having jurisdiction.
- B. Prepare and submit reports of purging and disinfecting activities. Include copies of watersample approvals from authorities having jurisdiction.
- C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.12 PIPING SCHEDULE

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Under-building-slab, domestic water, building-service piping, NPS 3 (DN 80) and smaller , shall be one of the following:
 - 1. Soft copper tube, ASTM B 88, Type K (ASTM B 88M, Type A) ; wrought-copper, solder-joint fittings; and brazed joints.
- D. Aboveground domestic water piping, NPS 2 (DN 50) and smaller , shall be one of the following:
 - 1. Hard copper tube, ASTM B 88, Type L (ASTM B 88M, Type B) ; wrought-copper, solder-joint fittings; and soldered joints.
- E. Aboveground domestic water piping, NPS 2-1/2 to NPS 4 (DN 65 to DN 100), shall be the following:
 - 1. Hard copper tube, ASTM B 88, Type L (ASTM B 88M, Type B) ; wrought-copper, solder-joint fittings; and soldered joints.

3.13 VALVE SCHEDULE

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use ball valves for piping NPS 2 (DN 50) and smaller. Use butterfly valves with flanged ends for piping NPS 2-1/2 (DN 65) and larger.
 - 2. Throttling Duty: Use ball or globe valves for piping NPS 2 (DN 50) and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 (DN 65) and larger.
 - 3. Drain Duty: Hose-end drain valves.
- B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION 221116

SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Vacuum breakers.
 - 2. Backflow preventers.
 - 3. Water pressure-reducing valves.
 - 4. Temperature-actuated, water mixing valves.
 - 5. Strainers.
 - 6. Hose bibbs.
 - 7. Drain valves.
 - 8. Water-hammer arresters.
 - 9. Trap-seal primer valves.
 - 10. Flexible connectors.
 - 11. Water meters.
- B. Related Requirements:
 - 1. Section 220519 "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For domestic water piping specialties.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

A. Potable-water piping and components shall comply with NSF 61.

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig (860 kPa) unless otherwise indicated.

2.3 VACUUM BREAKERS

- A. Hose-Connection Vacuum Breakers :
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Watts; 8B or comparable product by one of the following:
 - a. <u>Conbraco Industries, Inc</u>.
 - b. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.
 - 2. Standard: ASSE 1011.
 - 3. Body: Bronze, nonremovable, with manual drain.
 - 4. Outlet Connection: Garden-hose threaded complying with ASME B1.20.7.
 - 5. Finish: Rough bronze.

2.4 BACKFLOW PREVENTERS

- A. Reduced-Pressure-Principle Backflow Preventers :
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Watts; LF909 or comparable product by one of the following:
 - a. <u>Ames Fire & Waterworks; a division of Watts Water Technologies, Inc.</u>
 - b. <u>FEBCO; a division of Watts Water Technologies, Inc</u>.
 - c. <u>Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.</u>
 - 2. Standard: ASSE 1013.
 - 3. Operation: Continuous-pressure applications.
 - 4. Pressure Loss: 12 psig (83 kPa) maximum, through middle third of flow range.
 - 5. Body: Bronze for NPS 2 (DN 50) and smaller.
 - 6. End Connections: Threaded for NPS 2 (DN 50) and smaller;
 - 7. Configuration: Designed for horizontal, straight-through flow.
 - 8. Accessories:
 - a. Valves NPS 2 (DN 50) and Smaller: Ball type with threaded ends on inlet and outlet.
 - b. Air-Gap Fitting: ASME A112.1.2, matching backflow-preventer connection.

- B. Dual-Check-Valve Backflow Preventers :
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Watts; LF7 or comparable product by one of the following:
 - a. <u>Conbraco Industries, Inc</u>.
 - b. <u>Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.</u>
 - 2. Standard: ASSE 1024.
 - 3. Operation: Continuous-pressure applications.
 - 4. Size: As required.
 - 5. Body: Lead-free. Bronze with union inlet.

2.5 WATER PRESSURE-REDUCING VALVES

- A. Water Regulators :
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Watts; LF223S or LFN223BS or comparable product by one of the following:
 - a. <u>Conbraco Industries, Inc</u>.
 - b. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.
 - 2. Standard: ASSE 1003.
 - 3. Pressure Rating: Initial working pressure of 150 psig (1035 kPa).
 - 4. Body: Bronze.
 - 5. End Connections: Threaded.

2.6 TEMPERATURE-ACTUATED, WATER MIXING VALVES

- A. Individual-Fixture, Water Tempering Valves :
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Watts; LFMMVPowers; LFe480 or comparable product by one of the following:
 - a. <u>Lawler Manufacturing Company, Inc</u>.
 - b. <u>Leonard Valve Company</u>.
 - c. <u>Powers; a division of Watts Water Technologies, Inc</u>. (LFLM495)
 - d. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.
 - 2. Standard: ASSE 1069 & 1070, thermostatically controlled, water tempering valve.
 - 3. Pressure Rating: 125 psig (860 kPa) minimum unless otherwise indicated.
 - 4. Body: Bronze body with corrosion-resistant interior components.
 - 5. Temperature Control: Adjustable.
 - 6. Inlets and Outlet: Threaded.
 - 7. Finish: Rough or chrome-plated bronze.
 - 8. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
 - 9. Tempered-Water Setting: 105 deg F (41 deg C).

10. Minimum Tempered-Water Design Flow Rate: 0.5 gpm (0.03 L/s).

2.7 STRAINERS FOR DOMESTIC WATER PIPING

- A. Y-Pattern Strainers :
 - 1. Pressure Rating: 125 psig (860 kPa) minimum unless otherwise indicated.
 - 2. Body: Bronze for NPS 2 (DN 50) and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 (DN 65) and larger.
 - 3. End Connections: Threaded for NPS 2 (DN 50) and smaller; flanged for NPS 2-1/2 (DN 65) and larger.
 - 4. Screen: Stainless steel with round perforations unless otherwise indicated.
 - 5. Perforation Size:
 - a. Strainers NPS 2 (DN 50) and Smaller: 0.020 inch (0.51 mm) .
 - b. Strainers NPS 2-1/2 to NPS 4 (DN 65 to DN 100): 0.045 inch (1.14 mm) .
 - 6. Drain: Factory-installed, hose-end drain valve.

2.8 HOSE BIBBS

- A. Hose Bibbs :
 - 1. Standard: ASME A112.18.1 for sediment faucets.
 - 2. Body Material: Bronze.
 - 3. Seat: Bronze, replaceable.
 - 4. Supply Connections: NPS 1/2 or NPS 3/4 (DN 15 or DN 20) threaded or solder-joint inlet.
 - 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
 - 6. Pressure Rating: 125 psig (860 kPa).
 - 7. Vacuum Breaker: Integral nonremovable, drainable, hose-connection vacuum breaker complying with ASSE 1011.
 - 8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
 - 9. Finish for Service Areas: Rough bronze.
 - 10. Finish for Finished Rooms: Chrome or nickel plated.
 - 11. Operation for Equipment Rooms: Wheel handle or operating key.
 - 12. Operation for Service Areas: Wheel handle .
 - 13. Operation for Finished Rooms: Operating key.
 - 14. Include operating key with each operating-key hose bibb.
 - 15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.9 DRAIN VALVES

- A. Ball-Valve-Type, Hose-End Drain Valves :
 - 1. Standard: MSS SP-110 for standard-port, two-piece ball valves.
 - 2. Pressure Rating: 400-psig (2760-kPa) minimum CWP.

- 3. Size: NPS 3/4 (DN 20).
- 4. Body: Copper alloy.
- 5. Ball: Chrome-plated brass.
- 6. Seats and Seals: Replaceable.
- 7. Handle: Vinyl-covered steel.
- 8. Inlet: Threaded or solder joint.
- 9. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

2.10 WATER-HAMMER ARRESTERS

- A. Water-Hammer Arresters :
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Zurn; 1250XL or comparable product by one of the following:
 - a. <u>AMTROL, Inc</u>.
 - b. Josam Company.
 - c. <u>MIFAB, Inc</u>.
 - d. <u>Precision Plumbing Products, Inc</u>.
 - e. <u>Sioux Chief Manufacturing Company, Inc</u>.
 - f. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - g. <u>Watts Drainage Products</u>.
 - 2. Standard: ASSE 1010 or PDI-WH 201.
 - 3. Type: Copper tube with piston, lead-free.
 - 4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.11 TRAP-SEAL PRIMER DEVICE

- A. Supply-Type, Trap-Seal Primer Device :
 - 1. Standard: ASSE 1018.
 - 2. Pressure Rating: 125 psig (860 kPa) minimum.
 - 3. Body: Bronze.
 - 4. Inlet and Outlet Connections: NPS 1/2 (DN 15) threaded, union, or solder joint.
 - 5. Gravity Drain Outlet Connection: NPS 1/2 (DN 15) threaded or solder joint.
 - 6. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

2.12 FLEXIBLE CONNECTORS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Metraflex; BBS (Bronze) or SST/MLP (Steel) or comparable product by one of the following:
 - 1. <u>Flex-Hose Co., Inc</u>.
 - 2. <u>Flexicraft Industries</u>.

2.13 WATER METERS

- A. Displacement-Type Water Meters:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - a. ABB.
 - b. Badger Meter, Inc.
 - c. Mueller Co. Ltd.; a subsidiary of Mueller Water Products Inc.
 - 2. Description:
 - a. Standard: AWWA C700.
 - b. Pressure Rating: 150-psig (1035-kPa) working pressure.
 - c. Body Design: Nutating disc; totalization meter.
 - d. Registration: In gallons (liters) or cubic feet (cubic meters) as required by utility company.
 - e. Case: Bronze.
 - f. End Connections: Threaded.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 - 1. Locate backflow preventers in same room as connected equipment or system.
 - 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
 - 3. Do not install bypass piping around backflow preventers.
- B. Install water regulators with inlet and outlet shutoff valves and bypass with memory-stop balancing valve. Install pressure gages on inlet and outlet.
- C. Install Y-pattern strainers for water on supply side of each water pressure-reducing valve and pump.
- D. Install outlet boxes recessed in wall or surface mounted on wall. Install 2-by-4-inch (38-by-89mm) fire-retardant-treated-wood blocking, wall reinforcement between studs. Comply with requirements for fire-retardant-treated-wood blocking in Section 061000 "Rough Carpentry."
- E. Install water-hammer arresters in water piping according to PDI-WH 201.

F. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

3.2 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Test each reduced-pressure-principle backflow preventer according to authorities having jurisdiction and the device's reference standard.
- B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.3 ADJUSTING

- A. Set field-adjustable pressure set points of water pressure-reducing valves.
- B. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION 221119

This Page Left Intentionally Blank

SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipe, tube, and fittings.
 - 2. Specialty pipe fittings.
 - 3. Encasement for underground metal piping.

1.3 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Soil, Waste, and Vent Piping: 10-foot head of water (30 kPa).
 - 2. Waste, Force-Main Piping: 100 psig (690 kPa) .

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF/ANSI 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping and "NSF-sewer" for plastic sewer piping.

1.7 PROJECT CONDITIONS

- A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Owner no fewer than five days in advance of proposed interruption of sanitary waste service.
 - 2. Do not proceed with interruption of sanitary waste service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 GALVANIZED-STEEL PIPE AND FITTINGS

- A. Galvanized-Steel Pipe: ASTM A 53/A 53M, Type E, Standard Weight class. Include squarecut-grooved or threaded ends matching joining method.
- B. Galvanized-Cast-Iron Drainage Fittings: ASME B16.12, threaded.
- C. Steel Pipe Pressure Fittings:
 - 1. Galvanized-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106/A 106M, Schedule 40, seamless steel pipe. Include ends matching joining method.
 - 2. Malleable-Iron Unions: ASME B16.39; Class 150; hexagonal-stock body with ball-and-socket, metal-to-metal, bronze seating surface; and female threaded ends.
 - 3. Galvanized-Gray-Iron, Threaded Fittings: ASME B16.4, Class 125, standard pattern.

2.3 DUCTILE-IRON PIPE AND FITTINGS

- A. Ductile-Iron, Push-on-Joint Piping:
 - 1. Ductile-Iron Pipe: AWWA C151/A21.51, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 - 2. Ductile-Iron Fittings: AWWA C110/A21.10, push-on-joint ductile- or gray-iron standard pattern or AWWA C153/A21.53, ductile-iron compact pattern.
 - 3. Gaskets: AWWA C111/A21.11, rubber.

2.4 PVC PIPE AND FITTINGS

A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.

SANITARY WASTE AND VENT PIPING

- B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- C. Adhesive Primer: ASTM F 656.
 - 1. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Solvent Cement: ASTM D 2564.
 - 1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 SPECIALTY PIPE FITTINGS

- A. Transition Couplings:
 - 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 - 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 - 3. Unshielded, Nonpressure Transition Couplings:
 - a. Standard: ASTM C 1173.
 - b. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - c. Sleeve Materials:
 - 1) For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 - 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
 - 4. Pressure Transition Couplings:
 - a. Standard: AWWA C219.
 - b. Description: Metal, sleeve-type same size as, with pressure rating at least equal to, and ends compatible with, pipes to be joined.
 - c. Center-Sleeve Material: Manufacturer's standard.
 - d. Gasket Material: Natural or synthetic rubber.
 - e. Metal Component Finish: Corrosion-resistant coating or material.
- B. Dielectric Fittings:
 - 1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
 - 2. Dielectric Unions:

- a. Description:
 - 1) Standard: ASSE 1079.
 - 2) Pressure Rating: 125 psig (860 kPa) minimum at 180 deg F (82 deg C).
 - 3) End Connections: Solder-joint copper alloy and threaded ferrous.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of

lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

- K. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 (DN 80) and smaller; 1 percent downward in direction of flow for piping NPS 4 (DN 100) and larger.
 - 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 - 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- L. Install steel piping according to applicable plumbing code.
- M. Install aboveground PVC piping according to ASTM D 2665.
- N. Install underground PVC piping according to ASTM D 2321.
- O. Install engineered soil and waste drainage and vent piping systems as follows:
 - 1. Combination Waste and Vent: Comply with standards of authorities having jurisdiction.
- P. Install underground, ductile-iron, force-main piping according to AWWA C600. Install buried piping inside building between wall and floor penetrations and connection to sanitary sewer piping outside building with restrained joints. Anchor pipe to wall or floor. Install thrust-block supports at vertical and horizontal offsets.
- Q. Install force mains at elevations indicated.
- R. Plumbing Specialties:
 - 1. Install backwater valves in sanitary waster gravity-flow piping. Comply with requirements for backwater valves specified in Section 221319 "Sanitary Waste Piping Specialties."
 - 2. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."
 - 3. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Section 221319 "Sanitary Waste Piping Specialties."
- S. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- B. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

3.4 SPECIALTY PIPE FITTING INSTALLATION

- A. Transition Couplings:
 - 1. Install transition couplings at joints of piping with small differences in OD's.
 - 2. In Drainage Piping: Unshielded , nonpressure transition couplings.
 - 3. In Aboveground Force Main Piping: Fitting-type transition couplings.
 - 4. In Underground Force Main Piping:
 - a. NPS 1-1/2 (DN 40) and Smaller: Fitting-type transition couplings.
 - b. NPS 2 (DN 50) and Larger: Pressure transition couplings.
- B. Dielectric Fittings:
 - 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 - 2. Dielectric Fittings for NPS 2 (DN 50) and Smaller: Use dielectric unions.

3.5 VALVE INSTALLATION

- A. General valve installation requirements are specified in Section 220523 "General-Duty Valves for Plumbing Piping."
- B. Shutoff Valves:
 - 1. Install shutoff valve on each sewage pump discharge.
 - 2. Install full-port ball valve for piping NPS 2 (DN 50) and smaller.

- C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.
- D. Backwater Valves: Install backwater valves in piping subject to backflow.
 - 1. Horizontal Piping: Horizontal backwater valves.
 - 2. Install backwater valves in accessible locations.
 - 3. Comply with requirements for backwater valve specified in Section 221319 "Sanitary Waste Piping Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 3. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 4. Install individual, straight, horizontal piping runs:
 - a. MSS Type 1, adjustable, steel clevis hangers.
 - 5. Multiple, Straight, Horizontal Piping Runs: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
- B. Support horizontal piping within 12 inches (300 mm) of each fitting, valve, and coupling.
- C. Support vertical piping at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch (10-mm) minimum rods.
- E. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 (DN 40): 108 inches (2700 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 2 (DN 50): 10 feet (3 m) with 3/8-inch (10-mm) rod.
- F. Install supports for vertical steel piping every 15 feet (4.5 m).
- G. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): 48 inches (1200 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 3 (DN 80): 48 inches (1200 mm) with 1/2-inch (13-mm) rod.
 - 3. NPS 4 and NPS 5 (DN 100 and DN 125): 48 inches (1200 mm) with 5/8-inch (16-mm) rod.
- H. Install supports for vertical PVC piping every 48 inches (1200 mm).

SANITARY WASTE AND VENT PIPING

I. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect drainage and vent piping to the following:
 - 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 - 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 - 5. Install horizontal backwater valves with cleanout cover flush with floor .
 - 6. Comply with requirements for backwater valves cleanouts and drains specified in Section 221319 "Sanitary Waste Piping Specialties."
- D. Connect force-main piping to the following:
 - 1. Sanitary Sewer: To exterior force main.
 - 2. Sewage Pump: To sewage pump discharge.
- E. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- F. Make connections according to the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.

- 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water (30 kPa). From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg (250 Pa). Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
 - 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 6. Prepare reports for tests and required corrective action.
- E. Test force-main piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 2. Cap and subject piping to static-water pressure of 50 psig (345 kPa) above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - 3. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 4. Prepare reports for tests and required corrective action.

3.10 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

SANITARY WASTE AND VENT PIPING

- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.
- D. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of waterbased latex paint.

3.11 PIPING SCHEDULE

- A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
- B. Aboveground, soil and waste piping NPS 4 (DN 100) and smaller shall be any of the following:
 - 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 2. Dissimilar Pipe-Material Couplings: Unshielded , nonpressure transition couplings.
- C. Aboveground, vent piping NPS 4 (DN 100) and smaller shall be any of the following:
 - 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 2. Dissimilar Pipe-Material Couplings: Unshielded , nonpressure transition couplings.
- D. Underground, soil, waste, and vent piping NPS 4 (DN 100) and smaller shall be the following:
 - 1. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 2. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- E. Underground, soil and waste piping NPS 5 (DN 125) and larger shall be the following:
 - 1. Solid-wall PVC pipe; PVC socket fittings; and solvent-cemented joints.
 - 2. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- F. Aboveground sanitary-sewage force mains NPS 1-1/2 and NPS 2 (DN 40 and DN 50) shall be any of the following:
 - 1. Galvanized-steel pipe, pressure fittings, and threaded joints.
- G. Underground sanitary-sewage force mains NPS 4 (DN 100) and smaller shall be[any of] the following:
 - 1. Ductile-iron, push-on-joint piping and push-on joints.
 - 2. Fitting-type transition coupling for piping smaller than NPS 1-1/2 (DN 40) and pressure transition coupling for NPS 1-1/2 (DN 40) and larger if dissimilar pipe materials.

END OF SECTION 221316

SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Backwater valves.
 - 2. Cleanouts.
 - 3. Floor drains.
 - 4. Through-penetration firestop assemblies.
 - 5. Flashing materials.
 - 6. Oil interceptors.
- B. Related Requirements:
 - 1. Section 221423 "Storm Drainage Piping Specialties" for storm drainage piping inside the building, drainage piping specialties, and drains.

1.3 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. PVC: Polyvinyl chloride plastic.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for the following:
 - 1. Oil interceptors.
- B. Shop Drawings: Show fabrication and installation details for frost-resistant vent terminals.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

SANITARY WASTE PIPING SPECIALTIES

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For drainage piping specialties to include in operation and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic sanitary piping specialty components.

1.8 COORDINATION

A. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 BACKWATER VALVES

- A. Horizontal, Plastic Backwater Valves:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Zurn; BW2930 or a comparable product by one of the following:
 - a. <u>NDS Inc</u>.
 - b. <u>Sioux Chief Manufacturing Company, Inc</u>.
 - 2. Size: Same as connected piping.
 - 3. Body: PVC.
 - 4. Cover: Same material as body with threaded access to check valve.
 - 5. Check Valve: Removable swing check.
 - 6. End Connections: Socket type.
 - 7. Extension: Full-size, PVC pipe extension to field-installed cleanout at floor; replaces backwater valve cover.

2.2 CLEANOUTS

- A. Plastic Floor Cleanouts:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Zurn; CO-2449 or a comparable product by one of the following:
 - a. <u>NDS Inc</u>.
 - b. <u>Sioux Chief Manufacturing Company, Inc</u>.

- 2. Size: Same as connected branch.
- 3. Body: PVC.
- 4. Outlet Connection: PVC hub.
- 5. Closure Plug: ABS plug with tapered threads.
- 6. Adjustable Housing Material: PVC with threads.
- 7. Frame and Cover Material and Finish: Nickel-bronze, copper alloy.
- 8. Frame and Cover Shape: Round.
- 9. Top Loading Classification: Medium Duty.
- 10. Riser: Drainage pipe fitting and riser to cleanout of same material as drainage piping.
- B. Plastic Wall and Exposed Cleanouts:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Zurn; CO-2411 or a comparable product by one of the following:
 - a. <u>NDS Inc</u>.
 - b. <u>Sioux Chief Manufacturing Company, Inc</u>.
 - 2. Size: Same as connected branch.
 - 3. Body: PVC.
 - 4. Outlet Connection: PVC hub.
 - 5. Closure: PVC plug with tapered threads, countersunk with drilled-and-threaded brass insert.
 - 6. Closure Plug Size: Same as cleanout size.
 - 7. Wall Access: Round, flat, stainless-steel cover plate with screw.

2.3 FLOOR DRAINS

- A. Plastic Floor Drains:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Zurn; FD2280-P-R6/S6 or a comparable product by one of the following:
 - a. <u>Josam Company; Josam Div</u>.
 - b. <u>Sioux Chief Manufacturing Company, Inc</u>.
 - 2. Standard: ASME A112.6.3.
 - 3. Material: PVC.
 - 4. Seepage Flange: Required.
 - 5. Clamping Device: Required.
 - 6. Outlet: Bottom.
 - 7. Sediment Bucket: Not required.
 - 8. Top or Strainer Material: Nickel Bronze.
 - 9. Top Shape: Round; except square in tile floors.
 - 10. Dimensions of Top or Strainer: 6-inch (152-mm).
 - 11. Trap Material: Plastic drainage piping.
 - 12. Trap Pattern: Deep-seal P-trap.
 - 13. Trap Features: Cleanout and trap-seal primer valve drain connection.

2.4 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

- A. Through-Penetration Firestop Assemblies :
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>ProSet Systems Inc</u>.
 - 2. Standard: UL 1479 assembly of sleeve and stack fitting with firestopping plug.
 - 3. Size: Same as connected soil, waste, or vent stack.
 - 4. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
 - 5. Stack Fitting: ASTM A 48/A 48M, gray-iron, hubless-pattern, wye branch with neoprene O-ring at base and gray-iron plug in thermal-release harness. Include PVC protective cap for plug.
 - 6. Special Coating: Corrosion resistant on interior of fittings.

2.5 FLASHING MATERIALS

- A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
 - 1. General Use: 4.0-lb/sq. ft. (20-kg/sq. m), 0.0625-inch (1.6-mm) thickness.
 - 2. Vent Pipe Flashing: 3.0-lb/sq. ft. (15-kg/sq. m), 0.0469-inch (1.2-mm) thickness.
 - 3. Burning: 6-lb/sq. ft. (30-kg/sq. m), 0.0938-inch (2.4-mm) thickness.
- B. Elastic Membrane Sheet: ASTM D 4068, flexible, chlorinated polyethylene, 40-mil (1.01-mm) minimum thickness.
- C. Fasteners: Metal compatible with material and substrate being fastened.
- D. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.
- E. Solder: ASTM B 32, lead-free alloy.
- F. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

2.6 OIL INTERCEPTORS

- A. Oil Interceptors:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Zurn; Z885-1 or a comparable product by one of the following:
 - a. <u>Josam Company; Josam Div</u>.
 - b. <u>MIFAB, Inc</u>.
 - c. <u>Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.</u>

- d. <u>Watts Drainage Products Inc</u>.
- 2. Type: Factory-fabricated interceptor for separating and removing light oil from wastewater.
- 3. Body Material: Plastic.
- 4. Interior Lining: Not required.
- 5. Exterior Coating: Not required.
- 6. Body Dimensions: 36-inch depth, 12-inch invert.
- 7. Inlet and Outlet Size: 4-inch NPS.
- 8. End Connections: Hub.
- 9. Cleanout: Integral or field installed on outlet.
- 10. Mounting: Recessed, flush with floor or grade.
- 11. Flow-Control Fitting: Not required.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install backwater valves in building drain piping. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.
- B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4 (DN 100). Use NPS 4 (DN 100) for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 45 degrees.
 - 3. Locate at minimum intervals of 50 feet (15 m) for piping NPS 4 (DN 100) and smaller and 100 feet (30 m) for larger piping.
 - 4. Locate at base of each vertical soil and waste stack.
- C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- E. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 - 1. Position floor drains for easy access and maintenance.
 - 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 - a. Radius, 30 Inches (750 mm) or Less: Equivalent to 1 percent slope, but not less than 1/4-inch (6.35-mm) total depression.
 - b. Radius, 30 to 60 Inches (750 to 1500 mm): Equivalent to 1 percent slope.

- c. Radius, 60 Inches (1500 mm) or Larger: Equivalent to 1 percent slope, but not greater than 1-inch (25-mm) total depression.
- 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
- 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.
- F. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.
- G. Install through-penetration firestop assemblies in plastic stacks at floor penetrations.
- H. Assemble open drain fittings and install with top of hub 2 inches (51 mm) above floor.
- I. Install deep-seal traps on floor drains and other waste outlets, if indicated.
- J. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 - 2. Size: Same as floor drain inlet.
- K. Install oil interceptors, including trapping, venting, and flow-control fitting, according to authorities having jurisdiction and with clear space for servicing.
- L. Install wood-blocking reinforcement for wall-mounting-type specialties.
- M. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

- A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FLASHING INSTALLATION

- A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 - 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft. (30-kg/sq. m), 0.0938-inch (2.4-mm) thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft. (20-kg/sq. m), 0.0625-inch (1.6-mm) thickness or thinner.
- B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
- 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches (250 mm), and skirt or flange extending at least 8 inches (200 mm) around pipe.
- 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches (200 mm) around sleeve.
- 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches (200 mm) around specialty.
- C. Set flashing on floors and roofs in solid coating of bituminous cement.
- D. Secure flashing into sleeve and specialty clamping ring or device.
- E. Extend flashing up vent pipe passing through roofs and turn down into pipe.
- F. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Oil interceptors.

3.5 **PROTECTION**

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319

This Page Left Intentionally Blank

SECTION 221413 - FACILITY STORM DRAINAGE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipe, tube, and fittings.
 - 2. Specialty pipe fittings.

1.3 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Storm Drainage Piping: 10-foot head of water (30 kPa).
 - 2. Storm Drainage, Force-Main Piping: 100 psig (690 kPa) .

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF/ANSI 14, "Plastics Piping System Components and Related Materials," for plastic piping components. Include marking with "NSF-drain" for plastic drain piping and "NSF-sewer" for plastic sewer piping.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 GALVANIZED-STEEL PIPE AND FITTINGS

- A. Galvanized-Steel Pipe: ASTM A 53/A 53M, Type E, Standard Weight. Include square-cutgrooved or threaded ends matching joining method.
- B. Galvanized-Cast-Iron Drainage Fittings: ASME B16.12 threaded.
- C. Steel-Pipe Pressure Fittings:
 - 1. Galvanized-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106/A 106M, Schedule 40, seamless steel pipe. Include ends matching joining method.
 - 2. Malleable-Iron Unions: ASME B16.39; Class 150; hexagonal-stock body with ball-and-socket, metal-to-metal, bronze seating surface; and female threaded ends.
 - 3. Galvanized-Gray-Iron, Threaded Fittings: ASME B16.4, Class 125, standard pattern.

2.3 DUCTILE-IRON PIPE AND FITTINGS

- A. Ductile-Iron, Push-On-Joint Piping:
 - 1. Ductile-Iron Pipe: AWWA C151/A21.51, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 - 2. Ductile-Iron Fittings: AWWA C110/A21.10, push-on-joint ductile- or gray-iron standard pattern or AWWA C153/A21.53, ductile-iron compact pattern.
 - 3. Gaskets: AWWA C111/A21.11, rubber.

2.4 PVC PIPE AND FITTINGS

- A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
- B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- C. Adhesive Primer: ASTM F 656.
 - 1. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Solvent Cement: ASTM D 2564.

1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 SPECIALTY PIPE FITTINGS

- A. Transition Couplings:
 - 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 - 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified-pipingsystem fitting.
 - 3. Unshielded, Nonpressure Transition Couplings:
 - a. Standard: ASTM C 1173.
 - b. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - c. Sleeve Materials:
 - 1) For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 - 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
 - 4. Pressure Transition Couplings:
 - a. Standard: AWWA C219.
 - b. Description: Metal, sleeve-type couplings same size as, with pressure rating at least equal to and ends compatible with, pipes to be joined.
 - c. Center-Sleeve Material: Manufacturer's standard .
 - d. Gasket Material: Natural or synthetic rubber.
 - e. Metal Component Finish: Corrosion-resistant coating or material.
- B. Dielectric Fittings:
 - 1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
 - 2. Dielectric Unions:
 - a. Description:
 - 1) Standard: ASSE 1079.
 - 2) Pressure Rating: 150 psig (1035 kPa) at 180 deg F (82 deg C).
 - 3) End Connections: Solder-joint copper alloy and threaded ferrous.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations from layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Make changes in direction for storm drainage piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- K. Lay buried building storm drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- L. Install storm drainage piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Storm Drain: 2 percent downward in direction of flow for piping NPS 3 (DN 80) and smaller; 1 percent downward in direction of flow for piping NPS 4 (DN 100) and larger.
 - 2. Horizontal Storm-Drainage Piping: 2 percent downward in direction of flow.

FACILITY STORM DRAINAGE PIPING

- M. Install steel piping according to applicable plumbing code.
- N. Install aboveground PVC piping according to ASTM D 2665.
- O. Install underground PVC piping according to ASTM D 2321.
- P. Install underground, ductile-iron, force-main piping according to AWWA C600. Install buried piping inside building between wall and floor penetrations and connection to storm sewer piping outside building with restrained joints. Anchor pipe to wall or floor. Install thrust-block supports at vertical and horizontal offsets.
- Q. Install force mains at elevations indicated.
- R. Plumbing Specialties:
 - 1. Install backwater valves in storm drainage gravity-flow piping. Comply with requirements for backwater valves specified in Section 221423 "Storm Drainage Piping Specialties."
 - 2. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers in storm drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in storm drainage force-main piping. Comply with requirements for cleanouts specified in Section 221423 "Storm Drainage Piping Specialties."
 - 3. Install drains in storm drainage gravity-flow piping. Comply with requirements for drains specified in Section 221423 "Storm Drainage Piping Specialties."
- S. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

- B. Plastic, Nonpressure-Piping, Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

3.4 SPECIALTY PIPE FITTING INSTALLATION

- A. Transition Couplings:
 - 1. Install transition couplings at joints of piping with small differences in OD's.
 - 2. In Drainage Piping: Unshielded , nonpressure transition couplings.
 - 3. In Aboveground Force-Main Piping: Fitting-type transition couplings.
 - 4. In Underground Force-Main Piping:
 - a. NPS 1-1/2 (DN 40) and Smaller: Fitting-type transition couplings.
 - b. NPS 2 (DN 50) and Larger: Pressure transition couplings.
- B. Dielectric Fittings:
 - 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 - 2. Dielectric Fittings for NPS 2 (DN 50) and Smaller: Use dielectric unions.

3.5 VALVE INSTALLATION

- A. General valve installation requirements are specified in Section 220523 "General-Duty Valves for Plumbing Piping."
- B. Shutoff Valves: Install shutoff valve on each sump pump discharge.
 - 1. Install full-port ball valve for piping NPS 2 (DN 50) and smaller.
- C. Check Valves: Install swing-check valve, between pump and shutoff valve, on each sump pump discharge.
- D. Backwater Valves: Install backwater valves in piping subject to backflow.
 - 1. Horizontal Piping: Horizontal backwater valves.
 - 2. Install backwater valves in accessible locations.
 - 3. Comply with requirements for backwater valves specified in Section 221423 "Storm Drainage Piping Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.

FACILITY STORM DRAINAGE PIPING

- 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
- 3. Vertical Piping: MSS Type 8 or Type 42, clamps.
- 4. Individual, Straight, Horizontal Piping Runs:
 - a. MSS Type 1, adjustable, steel clevis hangers.
- 5. Multiple, Straight, Horizontal Piping Runs: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
- B. Support horizontal piping and tubing within 12 inches (300 mm) of each fitting, valve, and coupling.
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch (10-mm) minimum rods.
- E. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4 (DN 32): 84 inches (2100 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 1-1/2 (DN 40): 108 inches (2700 mm) with 3/8-inch (10-mm) rod.
 - 3. NPS 2 (DN 50): 10 feet (3 m) with 3/8-inch (10-mm) rod.
- F. Install supports for vertical steel piping every 15 feet (4.5 m).
- G. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): 48 inches (1200 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 3 (DN 80): 48 inches (1200 mm) with 1/2-inch (13-mm) rod.
 - 3. NPS 4 and NPS 5 (DN 100 and DN 125): 48 inches (1200 mm) with 5/8-inch (16-mm) rod.
- H. Install supports for vertical PVC piping every 48 inches (1200 mm).
- I. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect storm drainage piping to roof drains and storm drainage specialties.

- 1. Install test tees (wall cleanouts) in conductors near floor, and floor cleanouts with cover flush with floor.
- 2. Install horizontal backwater valves with cleanout cover flush with floor .
- 3. Comply with requirements for backwater valves cleanouts and drains specified in Section 221423 "Storm Drainage Piping Specialties."
- D. Connect force-main piping to the following:
 - 1. Storm Sewer: To exterior force main.
 - 2. Sump Pumps: To sump pump discharge.
- E. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- F. Make connections according to the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. Identify exposed storm drainage piping. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test storm drainage piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced storm drainage piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 3. Test Procedure: Test storm drainage piping on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-

foot head of water (30 kPa). From 15 minutes before inspection starts until completion of inspection, water level must not drop. Inspect joints for leaks.

- 4. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
- 5. Prepare reports for tests and required corrective action.
- E. Test force-main piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 2. Cap and subject piping to static-water pressure of 50 psig (345 kPa) above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - 3. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 4. Prepare reports for tests and required corrective action.

3.10 CLEANING

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.11 PIPING SCHEDULE

- A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
- B. Aboveground storm drainage piping NPS 6 (DN 150) and smaller shall be any of the following:
 1. Hubless, cast-iron soil pipe and fittings; heavy-duty, hubless-piping couplings; and
 - coupled joints.
 - 2. Cellular-core PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 3. Dissimilar Pipe-Material Couplings: Unshielded , nonpressure transition couplings.
- C. Underground storm drainage piping NPS 6 (DN 150) and smaller shall be any of the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Cellular-core PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 3. Dissimilar Pipe-Material Couplings: Unshielded , nonpressure transition couplings.
- D. Aboveground storm drainage force mains NPS 1-1/2 and NPS 2 (DN 40 and DN 50) shall be any of the following:
 - 1. Galvanized-steel pipe, pressure fittings, and threaded joints.

- E. Underground storm drainage force mains NPS 4 (DN 100) and smaller shall be any of the following:
 - 1. Ductile-iron, push-on-joint piping and push-on joints.
 - 2. Fitting-type transition coupling for piping smaller than NPS 1-1/2 (DN 40) and pressure transition coupling for NPS 1-1/2 (DN 40) and larger if dissimilar pipe materials.

END OF SECTION 221413

SECTION 221423 - STORM DRAINAGE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Miscellaneous storm drainage piping specialties.
 - 2. Cleanouts.
 - 3. Backwater valves.
 - 4. Through-penetration firestop assemblies.
 - 5. Flashing materials.
 - 6. Oil interceptors.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 CLEANOUTS

- A. Plastic Floor Cleanouts:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Zurn; CO-2449 or comparable product by one of the following:
 - a. <u>NDS Inc</u>.
 - b. <u>Sioux Chief Manufacturing Company, Inc</u>.
 - 2. Size: Same as connected branch.
 - 3. Body Material: PVC.
 - 4. Outlet Connection: PVC hub.

- 5. Closure Plug: ABS plug with tapered threads.
- 6. Adjustable Housing Material: PVC with threads.
- 7. Frame and Cover Material and Finish: Nickel-bronze, copper alloy.
- 8. Frame and Cover Shape: Round.
- 9. Top Loading Classification: Medium Duty.
- 10. Riser: Drainage pipe fitting and riser to cleanout of same material as drainage piping.
- B. Plastic Wall and Exposed Cleanouts:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Zurn; CO-2411 or a comparable product by one of the following:
 - a. <u>NDS Inc</u>.
 - b. <u>Sioux Chief Manufacturing Company, Inc</u>.
 - 2. Size: Same as connected branch.
 - 3. Body: PVC.
 - 4. Outlet Connection: PVC hub.
 - 5. Closure: PVC plug with tapered threads, countersunk with drilled-and-threaded brass insert.
 - 6. Closure Plug Size: Same as cleanout size.
 - 7. Wall Access: Round, flat, stainless-steel cover plate with screw.

2.2 BACKWATER VALVES

- A. Plastic, Horizontal Backwater Valves:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Zurn; BW2930 or comparable product by one of the following:
 - a. <u>NDS Inc</u>.
 - b. <u>Sioux Chief Manufacturing Company, Inc</u>.
 - 2. Standard: ASME A112.14.1, for backwater valves.
 - 3. Size: Same as connected piping.
 - 4. Body Material: PVC.
 - 5. Cover: Same material as body with threaded access to check valve.
 - 6. Check Valve: Removable swing check.
 - 7. End Connections: Socket type.
 - 8. Extension: Full-size, PVC pipe extension to field-installed cleanout at floor; replaces backwater valve cover.

2.3 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

- A. Through-Penetration Firestop Assemblies:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- a. <u>ProSet Systems Inc</u>.
- 2. Standard: ASTM E 814, for through-penetration firestop assemblies.
- 3. Size: Same as connected pipe.
- 4. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
- 5. Stack Fitting: ASTM A 48/A 48M, gray-iron, hubless-pattern, wye branch with neoprene O-ring at base and gray-iron plug in thermal-release harness. Include PVC protective cap for plug.
- 6. Special Coating: Corrosion resistant on interior of fittings.

2.4 OIL INTERCEPTORS

- A. Oil Interceptors :
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Zurn; Z885-1 or a comparable product by one of the following:
 - a. Josam Company; Josam Div.
 - b. <u>MIFAB, Inc</u>.
 - c. <u>Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.</u>
 - d. <u>Watts Drainage Products Inc</u>.
 - 2. Type: Factory-fabricated interceptor for separating and removing light oil from stormwater.
 - 3. Body Material: Plastic.
 - 4. Interior Lining: Not required.
 - 5. Exterior Coating: Not required.
 - 6. Body Dimensions: 36-inch depth, 12-inch invert.
 - 7. Inlet and Outlet Size: 4-inch NPS.
 - 8. End Connections: Hub.
 - 9. Cleanout: Integral or field installed on outlet.
 - 10. Mounting: Recessed, flush with floor or grade.
 - 11. Flow-Control Fitting: Not required.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install cleanouts in aboveground piping and building drain piping according to the following instructions unless otherwise indicated:
 - 1. Use cleanouts the same size as drainage piping up to NPS 4 (DN 100). Use NPS 4 (DN 100) for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate cleanouts at each change in direction of piping greater than 45 degrees.
 - 3. Locate cleanouts at minimum intervals of 50 feet (15 m) for piping NPS 4 (DN 100) and smaller and 100 feet (30 m) for larger piping.
 - 4. Locate cleanouts at base of each vertical stack.

- B. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- D. Install horizontal backwater valves in floor with cover flush with floor.
- E. Install test tees in vertical conductors and near floor.
- F. Install wall cleanouts in vertical conductors. Install access door in wall if indicated.
- G. Install through-penetration firestop assemblies in plastic conductors at concrete floor penetrations.

3.2 CONNECTIONS

- A. Comply with requirements for piping specified in Section 221413 "Facility Storm Drainage Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Oil Interceptors: Connect inlet, outlet, and vent piping to unit; flow-control fitting and vent to unit inlet piping.

3.3 **PROTECTION**

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221423

SECTION 223300 - ELECTRIC, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Commercial, electric, storage, domestic-water heaters.
 - 2. Domestic-water heater accessories.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings:
 - 1. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Product Certificates: For each type of commercial , electric, domestic-water heater, from manufacturer.
- B. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.
- C. Field quality-control reports.
- D. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For electric, domestic-water heaters to include in operation and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.
- C. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61, "Drinking Water System Components Health Effects."

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.8 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of electric, domestic-water heaters that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including storage tank and supports.
 - b. Faulty operation of controls.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal use.
 - 2. Warranty Periods: From date of Substantial Completion.
 - a. Commercial, Electric, Storage, Domestic-Water Heaters:
 - 1) Storage Tank: Five years.
 - 2) Controls and Other Components: Five years.

PART 2 - PRODUCTS

2.1 COMMERCIAL, ELECTRIC, DOMESTIC-WATER HEATERS

- A. Commercial, Light-Duty, Storage, Electric, Domestic-Water Heaters:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. <u>Bradford White Corporation</u>.
 - b. <u>Smith, A. O. Water Products Co.; a division of A. O. Smith Corporation</u>.
 - c. <u>State Industries</u>.
 - 2. Standard: UL 174.
 - 3. Storage-Tank Construction: Steel, vertical arrangement.

ELECTRIC, DOMESTIC-WATER HEATERS

- a. Tappings: ASME B1.20.1 pipe thread.
- b. Pressure Rating: 150 psig (1035 kPa).
- c. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending lining material into tappings.
- 4. Factory-Installed Storage-Tank Appurtenances:
 - a. Anode Rod: Replaceable magnesium.
 - b. Dip Tube: Required unless cold-water inlet is near bottom of tank.
 - c. Drain Valve: ASSE 1005.
 - d. Insulation: Comply with ASHRAE/IESNA 90.1.
 - e. Jacket: Steel with enameled finish.
 - f. Heat-Trap Fittings: Inlet type in cold-water inlet and outlet type in hot-water outlet.
 - g. Heating Elements: Two; electric, screw-in immersion type; wired for simultaneous operation unless otherwise indicated. Limited to 12 kW total.
 - h. Temperature Control: Adjustable thermostat.
 - i. Safety Control: High-temperature-limit cutoff device or system.
 - j. Relief Valve: ASME rated and stamped for combination temperature-and-pressure relief valves. Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valve with sensing element that extends into storage tank.
- 5. Special Requirements: NSF 5 construction with legs for off-floor installation.

2.2 DOMESTIC-WATER HEATER ACCESSORIES

- A. Domestic-Water Diaphragm Expansion Tanks:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide AMTROL, Inc.; ST-8 or comparable product by one of the following:
 - a. <u>Wessels Company</u>.
 - b. <u>Wood, John Co</u>.
 - 2. Description: Steel pressure-rated tank constructed with welded joints and factoryinstalled butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
 - 3. Construction:
 - a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 - b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 - c. Air-Charging Valve: Factory installed.
 - 4. Capacity and Characteristics:
 - a. Working-Pressure Rating: 100 psig (690 kPa).
 - b. Capacity Acceptable: 2 gal. (7.6 L) minimum.

- c. Air Precharge Pressure: 40-psig (275-kPa).
- B. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 (DN 20) with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.
- C. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1.
- D. Combination Temperature-and-Pressure Relief Valves: ASME rated and stamped. Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.
- E. Shock Absorbers: ASSE 1010 or PDI-WH 201, Size A water hammer arrester.
- F. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.3 SOURCE QUALITY CONTROL

- A. Factory Tests: Test and inspect domestic-water heaters specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.
- B. Hydrostatically test commercial domestic-water heaters to minimum of one and one-half times pressure rating before shipment.
- C. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.
- D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

- A. Commercial, Electric, Domestic-Water Heater Mounting: Install commercial, electric, domestic-water heaters on concrete base. Comply with requirements for concrete bases specified in Section 033053.1 "Miscellaneous Cast-in-Place Concrete for Mechanical and Electrical Systems."
 - 1. Exception: Omit concrete bases for commercial, electric, domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
 - 2. Maintain manufacturer's recommended clearances.
 - 3. Arrange units so controls and devices that require servicing are accessible.

- 4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
- 6. Anchor domestic-water heaters to substrate.
- B. Install electric, domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.
 - 1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 220523 "General-Duty Valves for Plumbing Piping."
- C. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
- D. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for electric, domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 221119 "Domestic Water Piping Specialties."
- E. Install thermometers on outlet piping of electric, domestic-water heaters. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."
- F. Install piping-type heat traps on inlet and outlet piping of electric, domestic-water heater storage tanks without integral or fitting-type heat traps.
- G. Fill electric, domestic-water heaters with water.
- H. Charge domestic-water compression tanks with air.

3.2 CONNECTIONS

- A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to electric, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.
- C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain commercial, electric, domestic-water heaters.

END OF SECTION 223300

SECTION 224213.13 - COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for water closets.
 - 2. Include rated capacities, operating characteristics, and furnished specialties and accessories.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves to include in operation and maintenance manuals.

1.4 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Flushometer-Valve Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than one of each type.

PART 2 - PRODUCTS

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before water-closet installation.
- B. Examine walls and floors for suitable conditions where water closets will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

COMMERCIAL WATER CLOSETS

3.2 INSTALLATION

- A. Water-Closet Installation:
 - 1. Install level and plumb according to roughing-in drawings.
 - 2. Install floor-mounted water closets on bowl-to-drain connecting fitting attachments to piping or building substrate.
- B. Flushometer-Valve Installation:
 - 1. Install flushometer-valve, water-supply fitting on each supply to each water closet.
 - 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
 - 3. Install lever-handle flushometer valves for accessible water closets with handle mounted on open side of water closet.
 - 4. Install actuators in locations that are easy for people with disabilities to reach.
- C. Install toilet seats on water closets.
- D. Wall Flange and Escutcheon Installation:
 - 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
 - 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
 - 3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- E. Joint Sealing:
 - 1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
 - 2. Match sealant color to water-closet color.

3.3 CONNECTIONS

- A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
- D. Where installing piping adjacent to water closets, allow space for service and maintenance.

3.4 ADJUSTING

- A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.
- B. Adjust water pressure at flushometer valves to produce proper flow.

COMMERCIAL WATER CLOSETS

3.5 CLEANING AND PROTECTION

- A. Clean water closets and fittings with manufacturers' recommended cleaning methods and materials.
- B. Install protective covering for installed water closets and fittings.
- C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

END OF SECTION 224213.13

This Page Left Intentionally Blank

SECTION 224216.13 - COMMERCIAL LAVATORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for lavatories.
 - 2. Include rated capacities, operating characteristics, and furnished specialties and accessories.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For lavatories and faucets to include in operation and maintenance manuals.

1.4 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 - 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 LAVATORY SUPPORTS

- A. Wall Mounted Lavatories
 - 1. Support: ASME A112.6.1M, Type II, concealed-arm lavatory carrier with rectangular, steel uprights.

2.2 SUPPLY FITTINGS

- A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components Health Effects," for supply-fitting materials that will be in contact with potable water.
- B. Standard: ASME A112.18.1/CSA B125.1.
- C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.
- D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.
- E. Operation: Cross handle.
- F. Risers:
 - 1. NPS 1/2 (DN 15).
 - 2. ASME A112.18.6, braided- or corrugated-stainless-steel, flexible hose riser.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.
- B. Examine counters and walls for suitable conditions where lavatories will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install lavatories level and plumb according to roughing-in drawings.
- B. Install supports, affixed to building substrate, for wall-mounted lavatories.
- C. Install accessible wall-mounted lavatories at handicapped/elderly mounting height for people with disabilities or the elderly, according to ICC/ANSI A117.1.
- D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- E. Seal joints between lavatories, counters, and walls using sanitary-type, one-part, mildewresistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

F. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

- A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

- A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.
- B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

- A. After completing installation of lavatories, inspect and repair damaged finishes.
- B. Clean lavatories, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
- C. Provide protective covering for installed lavatories and fittings.
- D. Do not allow use of lavatories for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.13

This Page Left Intentionally Blank

SECTION 224216.16 - COMMERCIAL SINKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Supply fittings.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for sinks.
 - 2. Include rated capacities, operating characteristics and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For sinks to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 - 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 SUPPLY FITTINGS

- A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components Health Effects," for supply-fitting materials that will be in contact with potable water.
- B. Supply Stops: Chrome-plated brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.
 - 1. Operation: Cross handle.
- C. Risers:
 - 1. NPS 1/2 (DN 15)
 - 2. ASME A112.18.6, braided or corrugated stainless-steel flexible hose.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before sink installation.
- B. Examine walls, floors, and counters for suitable conditions where sinks will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install sinks level and plumb according to roughing-in drawings.
- B. Install water-supply piping with stop on each supply to each sink faucet.
 - 1. Exception: Use ball, gate, or globe valves if supply stops are not specified with sink. Comply with valve requirements specified in Section 220523 "General-Duty Valves for Plumbing Piping."
 - 2. Install stops in locations where they can be easily reached for operation.
- C. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- D. Seal joints between sinks and counters, floors, and walls using sanitary-type, one-part, mildewresistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

E. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible sinks. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

- A. Connect sinks with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

- A. Operate and adjust sinks and controls. Replace damaged and malfunctioning sinks, fittings, and controls.
- B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

- A. After completing installation of sinks, inspect and repair damaged finishes.
- B. Clean sinks, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
- C. Provide protective covering for installed sinks and fittings.
- D. Do not allow use of sinks for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.16

This Page Left Intentionally Blank

SECTION 224716 - PRESSURE WATER COOLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes pressure water coolers and related components.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of pressure water cooler.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For pressure water coolers to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filter Cartridges: Equal to 10 percent of quantity installed for each type and size indicated, but no fewer than two of each.

PART 2 - PRODUCTS

2.1 PRESSURE WATER COOLERS

- A. Pressure Water Coolers : Wall mounted .
 - 1. Support: ASME A112.6.1M, Type I water-cooler carrier with rectangular, steel uprights.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before fixture installation.
- B. Examine walls and floors for suitable conditions where fixtures will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install fixtures level and plumb according to roughing-in drawings. For fixtures indicated for children, install at height required by authorities having jurisdiction.
- B. Install off-the-floor carrier supports, affixed to building substrate, for wall-mounted fixtures.
- C. Install water-supply piping with shutoff valve on supply to each fixture to be connected to domestic-water distribution piping. Use ball, gate, or globe valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Section 220523 "General-Duty Valves for Plumbing Piping."
- D. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.
- E. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- F. Seal joints between fixtures and walls using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

- A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Install ball, gate, or globe shutoff valve on water supply to each fixture. Install valve upstream from filter for water cooler. Comply with valve requirements specified in Section 220523 "General-Duty Valves for Plumbing Piping."
- D. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
3.4 ADJUSTING

- A. Adjust fixture flow regulators for proper flow and stream height.
- B. Adjust pressure water-cooler temperature settings.

3.5 CLEANING

- A. After installing fixture, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.
- B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.
- C. Provide protective covering for installed fixtures.
- D. Do not allow use of fixtures for temporary facilities unless approved in writing by Owner.

This Page Left Intentionally Blank

SECTION 230100 - GENERAL PROVISIONS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Applicable provisions of this section apply to all sections of Division 23, Heating, Ventilating and Air Conditioning

1.2 INFORMATIONAL SUBMITTALS

- A. Furnish a copy of the installer's warranty.
- B. Furnish a copy of the manufacturer's warranty for each piece of equipment.

1.3 QUALITY ASSURANCE

- A. General:
 - 1. It is the intent of the plans and specifications to obtain a complete, operable and satisfactory installation.
 - 2. All materials shall be new, be properly labeled and/or identified and be in full compliance with the contract documents.
 - 3. All work shall comply with applicable Codes and Standards.
 - 4. Manufacturer's model names and numbers used in these specifications are subject to change per manufacturer's action. Contractor shall therefore verify them with manufacturer's representative before ordering any product or equipment
- B. Furnish new and unused materials and equipment manufactured in the U.S.A. Where two or more units of the same type or class of equipment are required provide units of a single manufacturer.

1.4 CODE REQUIREMENTS

- A. Perform work in accordance with the following codes and any applicable statutes, ordinances, codes, and regulations of governmental authorities having jurisdiction.
 - 1. ASHRAE
 - a. Standard 15 Safety Standard for Refrigeration Systems
 - b. Standard 55 Thermal Environmental Conditions for Human Occupancy
 - c. Standard 62 Ventilation Standard for Acceptable Indoor air Quality

- d. Standard 90.1 Energy Standard for Buildings Except Low Rise Residential Buildings
- 2. ASME Boiler and Pressure Vessel Code 2004 Edition w/ 2005 & 2006 Addenda Section VIII Rules for Construction of Pressure Vessels
- 3. Occupational Safety and Health Regulations (OSHA).
- 4. National Fire Codes
 - a. NFPA 1 Uniform Fire Code
 - b. NFPA 54 National Fuel Gas Code
 - c. NFPA 70 National Electrical Code
 - d. NFPA 90A Standard for the Installation of Air Conditioning and Ventilation Systems
 - e. NFPA 90B Standard for the Installation of Warm Air Heating and Air Conditioning Systems
 - f. NFPA 91 Standard for the Installation of Blower and Exhaust Systems
 - g. NFPA 101 Life Safety Code
- 5. Florida Building Codes 2007 Edition w/ 2008 & 2009 Supplements
 - a. Building Code Chapter 11 Florida Accessibility Code
 - b. Building Code Chapter 13 Energy Efficiency Code
 - c. Mechanical Code
 - d. Fuel Gas Code
- 6. Florida Administrative Code
 - a. Chapter 6A–2 Educational Facilities
 - b. Chapter 9B-7 Florida Building Commission Handicapped Accessibility Standards
 - c. Chapter 61G15-34 Responsibility Rules of Professional Engineers Concerning the Design of Mechanical Systems
 - d. Chapter 69A-3 Fire Prevention General Provisions
 - e. Chapter 69A-47 Uniform Fire Safety Standards for Elevators
 - f. Chapter 69A–58 Fire Safety in Educational Facilities
 - g. Chapter 69A-60 The Florida Fire Prevention Code
- 7. ADA Accessibility Guidelines for Buildings (ADAAG)
- B. Resolve, in writing, any code violation discovered in contract documents with the Engineer prior to bidding. After award of the contract, make any correction or addition necessary for compliance with applicable codes at no additional cost to Owner.
- C. The installer shall include in the work, without extra cost to the Owner, any labor, materials, services, apparatus and drawings required to comply with all applicable laws, ordinances, rules and regulations.

1.5 REFERENCE SPECIFICATIONS AND STANDARDS

A. Materials which are specified by reference to Federal Specifications; ASTM, ASME, ANSI, or AWWA Specifications; Federal Standards; or other standard specifications must comply with

latest editions, revisions, amendments or supplements in effect on date bids are received. Specifications and standards are minimum requirements for all equipment, material and work. In instances where capacities, size or other feature of equipment, devices or materials exceed these minimums, meet listed or shown capacities.

B. Whenever a reference is made to a standard, installation and materials shall comply with the latest published edition of the standard at the time project is bid unless otherwise specified herein

1.6 PERMITS FEES AND INSPECTIONS

- A. Obtain and pay for all permits, fees, tap fees, connection charges, demand charges, systems charges, impact fees and inspections.
- B. Deliver all certificates of inspection issued by authorities having jurisdiction to the Engineer.

1.7 WARRANTY

A. Warranty work and equipment for one year from the date of final acceptance of the project. During the warranty period provide labor and materials to make good any faults or imperfections that may arise due to defects or omissions in materials or workmanship.

PART 2 - PRODUCTS

PART 3 - EXECUTION

3.1 CONTRACT DOCUMENTS

- A. Examine all drawings and specifications carefully before submitting a bid. Architectural drawings take precedence over mechanical or electrical drawings with reference to building construction. If discrepancies or conflicts occur between drawings, or between drawings and specifications, notify the Engineer in writing prior to bid date; however, the most stringent requirement shall govern.
- B. For purposes of clearness and legibility, drawings are essentially diagrammatic and, although size and location of equipment are drawn to scale wherever possible, Contractor shall make use of all data in all of the contract documents and shall verify this information at the building site.
- C. The drawings indicate required size and points of termination of pipes, conduits and ducts and suggest proper routes to conform to structure avoid obstructions and preserve clearances. However, it is not intended that drawings indicate all necessary offsets, and it shall be the responsibility of the Contractor to make the installation in such a manner as to conform to structure, avoid obstructions, preserve headroom and keep openings and passageways clear, without further instructions or cost to the Owner.
- D. Furnish, install and/or connect with appropriate services all items shown on any drawing without additional compensation.

- E. Consider the terms "provide" and "install" as synonymous with "furnish and install".
- F. Any and all questions about a subcontractor's scope of work responsibility shall be addressed to and answered by the Construction Manager.
- G. Questions About Construction Documents: Any and all questions shall be submitted through the proper channels IN WRITING and, in turn, shall be answered by the Engineer in writing. All telephone conversations shall be considered unofficial and, as such, shall not be considered official or binding responses to Contractor's questions.

3.2 INSTALLATION

- A. Install materials and equipment in a professional manner. The Engineer may direct replacement of items which, in his opinion, do not present a professional appearance. Replace or reinstall items at the expense of the Contractor.
- B. Obstructions
 - 1. The drawings indicate certain information pertaining to surface and subsurface obstructions which has been taken from available drawings. Such information is not guaranteed, however, as to accuracy of location or complete information.
 - 2. Before any cutting or trenching operations are begun, verify with Owner's representative, utility companies, municipalities, and other interested parties that all available information has been provided. Verify locations given.
 - 3. Should obstruction be encountered, whether shown or not, alter routing of new work, reroute existing lines, remove obstruction where permitted, or otherwise perform whatever work is necessary to satisfy the purpose of the new work and leave existing services and structures in a satisfactory and serviceable condition.
 - 4. Assume total responsibility for and repair any damage to existing utilities or construction, whether or not such existing facilities are shown.
- C. Where "rated" walls, floor, roofs and ceilings are penetrated or cut to install equipment, materials, devices, etc. the Contractor shall provide and install all materials required to reestablish the rating of the wall, floor, roof or ceiling to the satisfaction of the authority having jurisdiction.
- D. Space Requirements: Consider space limitations imposed by contiguous work in selection and location of equipment and material. Do not provide equipment or material which is not suitable in this respect.
- E. Select equipment to operate with minimum noise and vibration. If objectionable noise or vibration is produced or transmitted to or through the building structure by equipment, piping, ducts or other parts of work, rectify such conditions without cost to the Owner.
- F. Wiring Method: Install cables in raceways and cable trays except low voltage network cable above accessible ceilings. Conceal raceway and cables except in unfinished spaces.
 - 1. Comply with requirements for cable trays specified in Division 26 Section "Cable Trays for Electrical Systems."

- 2. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceways and Boxes for Electrical Systems."
- G. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- H. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Furnish a letter from the control manufacturer stating that all controls have been checked for operation and calibration, and the system is operating as designed.
- C. Furnish a letter from an authorized factory representative of the air conditioning unit manufacturer stating that the complete refrigeration installation including pipe sizing and routing and operating and safety controls has been checked and is operating properly.
- D. Tests
 - 1. Include all tests specified and/or required under laws, rules and regulations of all departments having jurisdiction. Tests shall also be performed as indicated herein and other sections of the specifications.
 - 2. After all mechanical systems have been completed and put into operation, subject each system to an operating test under design conditions to insure proper sequence and operation throughout the range of operation. Make adjustments as required to insure proper functioning of all systems.
 - 3. All parts of the work and associated equipment shall be tested and adjusted to work properly and be left in perfect operating condition.
 - 4. Correct defects disclosed by these tests without any additional cost to the Owner. Repeat tests on repaired or replaced work.
 - 5. Maintain a log of all tests being conducted and have it available for review by the Engineer. Log to indicate date, type of tests, duration, and defects noted and when corrected.
 - 6. Special tests on individual systems are specified under individual sections.
 - 7. Mechanical Contractor shall provide personnel, tools and equipment and assist the Test and Balance Contractor in making any adjustments necessary to meet the test and balance requirements.

This Page Left Intentionally Blank

DOCUMENT 230110 - PROCUREMENT SUBSTITUTION PROCEDURES

1.1 DEFINITIONS

- A. Procurement Substitution Requests: Requests for changes in products, materials, equipment, and methods of construction from those indicated in the Procurement and Contracting Documents, submitted prior to receipt of bids.
- B. Substitution Requests: Requests for changes in products, materials, equipment, and methods of construction from those indicated in the Contract Documents, submitted following Contract award. See Section 230115 "Substitution Procedures" for conditions under which Substitution requests will be considered following Contract award.

1.2 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

1.3 PROCUREMENT SUBSTITUTIONS

- A. Procurement Substitutions, General: By submitting a bid, the Bidder represents that its bid is based on materials and equipment described in the Procurement and Contracting Documents, including Addenda. Bidders are encouraged to request approval of qualifying substitute materials and equipment when the Specifications Sections list materials and equipment by product or manufacturer name.
- B. Procurement Substitution Requests will be received and considered by Owner when the following conditions are satisfied, as determined by Engineer; otherwise requests will be returned without action:
 - 1. Extensive revisions to the Contract Documents are not required.
 - 2. Proposed changes are in keeping with the general intent of the Contract Documents, including the level of quality of the Work represented by the requirements therein.
 - 3. The request is fully documented and properly submitted.

1.4 SUBMITTALS

- A. Procurement Substitution Request: Submit to Engineer . Procurement Substitution Request must be made in writing in compliance with the following requirements:
 - 1. Requests for substitution of materials and equipment will be considered if received no later than 10 days prior to date of bid opening.
 - 2. Submittal Format: Submit two copies of each written Procurement Substitution Request, using CSI Substitution Request Form 1.5C.

- a. Identify the product or the fabrication or installation method to be replaced in each request. Include related Specifications Sections and drawing numbers.
- b. Provide complete documentation on both the product specified and the proposed substitute, including the following information as appropriate:
 - 1) Point-by-point comparison of specified and proposed substitute product data, fabrication drawings, and installation procedures.
 - 2) Samples where applicable or when requested by Engineer.
 - 3) Detailed comparison of significant qualities of the proposed substitute with those of the Work specified. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
 - 4) Coordination information, including a list of changes or modifications needed to other parts of the Work and to construction performed by Owner and separate contractors, which will become necessary to accommodate the proposed substitute.
- c. Provide certification by manufacturer that the substitute proposed is equal to or superior to that required by the Procurement and Contracting Documents, and that its in-place performance will be equal to or superior to the product or equipment specified in the application indicated.
- d. Bidder, in submitting the Procurement Substitution Request, waives the right to additional payment or an extension of Contract Time because of the failure of the substitute to perform as represented in the Procurement Substitution Request.
- B. Engineer's Action:
 - 1. Engineer may request additional information or documentation necessary for evaluation of the Procurement Substitution Request. Engineer will notify all bidders of acceptance of the proposed substitute by means of an Addendum to the Procurement and Contracting Documents.
- C. Engineer's approval of a substitute during bidding does not relieve Contractor of the responsibility to submit required shop drawings and to comply with all other requirements of the Contract Documents.

END OF DOCUMENT 230110

SECTION 230115 - SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for substitutions.
- B. Related Requirements:
 - 1. Section 230150 "Product Requirements" for requirements for submitting comparable product submittals for products by listed manufacturers.

1.3 DEFINITIONS

- A. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.
 - 1. Substitutions for Cause: Changes proposed by Contractor that are required due to changed Project conditions, such as unavailability of product, regulatory changes, or unavailability of required warranty terms.
 - 2. Substitutions for Convenience: Changes proposed by Contractor or Owner that are not required in order to meet other Project requirements but may offer advantage to Contractor or Owner.

1.4 ACTION SUBMITTALS

- A. Substitution Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 - 1. Substitution Request Form: Use CSI Form 13.1A.
 - 2. Documentation: Show compliance with requirements for substitutions and the following, as applicable:
 - a. Statement indicating why specified product or fabrication or installation cannot be provided, if applicable.
 - b. Coordination information, including a list of changes or revisions needed to other parts of the Work and to construction performed by Owner and separate contractors, that will be necessary to accommodate proposed substitution.

- c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Include annotated copy of applicable Specification Section. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
- d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.
- e. Samples, where applicable or requested.
- f. Certificates and qualification data, where applicable or requested.
- g. Detailed comparison of Contractor's construction schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.
- h. Cost information, including a proposal of change, if any, in the Contract Sum.
- i. Contractor's certification that proposed substitution complies with requirements in the Contract Documents except as indicated in substitution request, is compatible with related materials, and is appropriate for applications indicated.
- j. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.
- 3. Engineer's Action: If necessary, Engineer will request additional information or documentation for evaluation within seven days of receipt of a request for substitution. Engineer will notify Contractor through Construction Manager of acceptance or rejection of proposed substitution within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.
 - a. Forms of Acceptance: Change Order, Construction Change Directive, or Architect's Supplemental Instructions for minor changes in the Work.
 - b. Use product specified if Engineer does not issue a decision on use of a proposed substitution within time allocated.

1.5 PROCEDURES

A. Coordination: Revise or adjust affected work as necessary to integrate work of the approved substitutions.

PART 2 - PRODUCTS

2.1 SUBSTITUTIONS

A. Substitutions for Cause: Submit requests for substitution immediately on discovery of need for change, but not later than 15 days prior to time required for preparation and review of related submittals.

- 1. Conditions: Engineer will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Engineer will return requests without action, except to record noncompliance with these requirements:
 - a. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 - b. Requested substitution provides sustainable design characteristics that specified product provided.
 - c. Substitution request is fully documented and properly submitted.
 - d. Requested substitution will not adversely affect Contractor's construction schedule.
 - e. Requested substitution has received necessary approvals of authorities having jurisdiction.
 - f. Requested substitution is compatible with other portions of the Work.
 - g. Requested substitution has been coordinated with other portions of the Work.
 - h. Requested substitution provides specified warranty.
 - i. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.
- B. Substitutions for Convenience: Engineer will consider requests for substitution if received within 60 days after the Notice of Award. Requests received after that time may be considered or rejected at discretion of Engineer.
 - 1. Conditions: Engineer will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Engineer will return requests without action, except to record noncompliance with these requirements:
 - a. Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner's additional responsibilities may include compensation to Engineer for redesign and evaluation services, increased cost of other construction by Owner, and similar considerations.
 - b. Requested substitution does not require extensive revisions to the Contract Documents.
 - c. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 - d. Requested substitution provides sustainable design characteristics that specified product provided .
 - e. Substitution request is fully documented and properly submitted.
 - f. Requested substitution will not adversely affect Contractor's construction schedule.
 - g. Requested substitution has received necessary approvals of authorities having jurisdiction.
 - h. Requested substitution is compatible with other portions of the Work.
 - i. Requested substitution has been coordinated with other portions of the Work.
 - j. Requested substitution provides specified warranty.
 - k. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

PART 3 - EXECUTION (Not Used)

SECTION 230120 - SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes requirements for the submittal schedule and administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.
- B. Related Requirements:
 - 1. Section 230170 "Operation and Maintenance Data" for submitting operation and maintenance manuals.
 - 2. Section 230180 "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.
 - 3. Section 230190 "Demonstration and Training" for submitting video recordings of demonstration of equipment and training of Owner's personnel.

1.3 DEFINITIONS

- A. Action Submittals: Written and graphic information and physical samples that require Engineer's responsive action. Action submittals are those submittals indicated in individual Specification Sections as "action submittals."
- B. Informational Submittals: Written and graphic information and physical samples that do not require Engineer's responsive action. Submittals may be rejected for not complying with requirements. Informational submittals are those submittals indicated in individual Specification Sections as "informational submittals."
- C. File Transfer Protocol (FTP): Communications protocol that enables transfer of files to and from another computer over a network and that serves as the basis for standard Internet protocols. An FTP site is a portion of a network located outside of network firewalls within which internal and external users are able to access files.
- D. Portable Document Format (PDF): An open standard file format licensed by Adobe Systems used for representing documents in a device-independent and display resolution-independent fixed-layout document format.

1.4 SUBMITTAL ADMINISTRATIVE REQUIREMENTS

- A. Engineer's Digital Data Files: Electronic digital data files of the Contract Drawings will not be provided by Engineer for Contractor's use in preparing submittals.
- B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 - 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 - 2. Submit all submittal items required for each Specification Section concurrently unless partial submittals for portions of the Work are indicated on approved submittal schedule.
 - 3. Submit action submittals and informational submittals required by the same Specification Section as separate packages under separate transmittals.
 - 4. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.
 - a. Engineer reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.
- C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Engineer's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 - 1. Initial Review: Allow 15 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Engineer will advise Contractor when a submittal being processed must be delayed for coordination.
 - 2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.
 - 3. Resubmittal Review: Allow 15 days for review of each resubmittal.
 - 4. Sequential Review: Where sequential review of submittals by Engineer's consultants, Owner, or other parties is indicated, allow 21 days for initial review of each submittal.
- D. Electronic Submittals: Identify and incorporate information in each electronic submittal file as follows:
 - 1. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.
 - 2. Name file with submittal number or other unique identifier, including revision identifier.
 - a. File name shall use project identifier and Specification Section number followed by a decimal point and then a sequential number (e.g., LNHS-061000.01). Resubmittals shall include an alphabetic suffix after another decimal point (e.g., LNHS-061000.01.A).
 - 3. Provide means for insertion to permanently record Contractor's review and approval markings and action taken by Engineer.

- 4. Transmittal Form for Electronic Submittals: Use electronic form acceptable to Owner, containing the following information:
 - a. Project name.
 - b. Date.
 - c. Name and address of Engineer.
 - d. Name of Construction Manager.
 - e. Name of Contractor.
 - f. Name of firm or entity that prepared submittal.
 - g. Names of subcontractor, manufacturer, and supplier.
 - h. Category and type of submittal.
 - i. Submittal purpose and description.
 - j. Specification Section number and title.
 - k. Specification paragraph number or drawing designation and generic name for each of multiple items.
 - 1. Drawing number and detail references, as appropriate.
 - m. Location(s) where product is to be installed, as appropriate.
 - n. Related physical samples submitted directly.
 - o. Indication of full or partial submittal.
 - p. Transmittal number, numbered consecutively.
 - q. Submittal and transmittal distribution record.
 - r. Other necessary identification.
 - s. Remarks.
- 5. Metadata: Include the following information as keywords in the electronic submittal file metadata:
 - a. Project name.
 - b. Number and title of appropriate Specification Section.
 - c. Manufacturer name.
 - d. Product name.
- E. Options: Identify options requiring selection by Engineer.
- F. Deviations and Additional Information: On an attached separate sheet, prepared on Contractor's letterhead, record relevant information, requests for data, revisions other than those requested by Engineer on previous submittals, and deviations from requirements in the Contract Documents, including minor variations and limitations. Include same identification information as related submittal.
- G. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
 - 1. Note date and content of previous submittal.
 - 2. Note date and content of revision in label or title block and clearly indicate extent of revision.
 - 3. Resubmit submittals until they are marked with approval notation from Engineer's action stamp.
- H. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.

I. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Engineer's action stamp.

PART 2 - PRODUCTS

2.1 SUBMITTAL PROCEDURES

- A. General Submittal Procedure Requirements: Prepare and submit submittals required by individual Specification Sections. Types of submittals are indicated in individual Specification Sections.
 - 1. Post electronic submittals as PDF electronic files directly to Engineer's FTP site specifically established for Project.
 - a. Engineer will return annotated file. Annotate and retain one copy of file as an electronic Project record document file.
 - 2. Certificates and Certifications Submittals: Provide a statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity.
 - a. Provide a digital signature with digital certificate on electronically submitted certificates and certifications where indicated.
- B. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.
 - 1. If information must be specially prepared for submittal because standard published data are not suitable for use, submit as Shop Drawings, not as Product Data.
 - 2. Mark each copy of each submittal to show which products and options are applicable.
 - 3. Include the following information, as applicable:
 - a. Manufacturer's catalog cuts.
 - b. Manufacturer's product specifications.
 - c. Standard color charts.
 - d. Statement of compliance with specified referenced standards.
 - e. Testing by recognized testing agency.
 - f. Application of testing agency labels and seals.
 - g. Notation of coordination requirements.
 - h. Availability and delivery time information.
 - 4. For equipment, include the following in addition to the above, as applicable:
 - a. Wiring diagrams showing factory-installed wiring.
 - b. Printed performance curves.
 - c. Operational range diagrams.
 - d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.

- 5. Submit Product Data before or concurrent with Samples.
- 6. Submit Product Data in the following format:
 - a. PDF electronic file.
- C. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data.
 - 1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 - a. Identification of products.
 - b. Schedules.
 - c. Compliance with specified standards.
 - d. Notation of coordination requirements.
 - e. Notation of dimensions established by field measurement.
 - f. Relationship and attachment to adjoining construction clearly indicated.
 - g. Seal and signature of professional engineer if specified.
 - 2. Sheet Size: Except for templates, patterns, and similar full-size drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches (215 by 280 mm), but no larger than 30 by 42 inches (750 by 1067 mm).
 - 3. Submit Shop Drawings in the following format:
 - a. PDF electronic file.
- D. Maintenance Data: Comply with requirements specified in Section 230170 "Operation and Maintenance Data."
- E. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of Engineers and owners, and other information specified.
- F. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification and Procedure Qualification Record on AWS forms. Include names of firms and personnel certified.
- G. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.
- H. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.

2.2 DELEGATED-DESIGN SERVICES

- A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.
 - 1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Engineer.
- B. Delegated-Design Services Certification: In addition to Shop Drawings, Product Data, and other required submittals, submit four paper copies of certificate, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.
 - 1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

PART 3 - EXECUTION

3.1 CONTRACTOR'S REVIEW

- A. Action and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Engineer.
- B. Approval Stamp: Stamp each submittal with a uniform, approval stamp. Include Project name and location, submittal number, Specification Section title and number, name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.

3.2 ENGINEER'S ACTION

- A. Action Submittals: Engineer will review each submittal, make marks to indicate corrections or revisions required, and return it. Engineer will stamp each submittal with an action stamp and will mark stamp appropriately to indicate action.
- B. Informational Submittals: Engineer will review each submittal and will not return it, or will return it if it does not comply with requirements. Engineer will forward each submittal to appropriate party.
- C. Partial submittals prepared for a portion of the Work will be reviewed when use of partial submittals has received prior approval from Engineer.
- D. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.
- E. Submittals not required by the Contract Documents may be returned by the Engineer without action.

This Page Left Intentionally Blank

SECTION 230130 - QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for quality assurance and quality control.
- B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
 - 1. Specific quality-assurance and -control requirements for individual construction activities are specified in the Sections that specify those activities. Requirements in those Sections may also cover production of standard products.
 - 2. Specified tests, inspections, and related actions do not limit Contractor's other qualityassurance and -control procedures that facilitate compliance with the Contract Document requirements.
 - 3. Requirements for Contractor to provide quality-assurance and -control services required by Engineer, Owner, Commissioning Authority, or authorities having jurisdiction are not limited by provisions of this Section.
 - 4. Specific test and inspection requirements are not specified in this Section.

1.3 DEFINITIONS

- A. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.
- B. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Engineer.
- C. Source Quality-Control Testing: Tests and inspections that are performed at the source, e.g., plant, mill, factory, or shop.
- D. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work.

- E. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.
- F. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations.
 - 1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade(s).
- G. Experienced: When used with an entity or individual, "experienced" means having successfully completed a minimum of five previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.

1.4 CONFLICTING REQUIREMENTS

- A. Referenced Standards: If compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but apparently equal, to Engineer for a decision before proceeding.
- B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Engineer for a decision before proceeding.

1.5 QUALITY ASSURANCE

- A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.
- B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- D. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.
- E. Manufacturer's Technical Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation

of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

F. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

1.6 QUALITY CONTROL

- A. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections.
- B. Manufacturer's Technical Services: Where indicated, engage a manufacturer's technical representative to observe and inspect the Work. Manufacturer's technical representative's services include participation in preinstallation conferences, examination of substrates and conditions, verification of materials, observation of Installer activities, inspection of completed portions of the Work, and submittal of written reports.
- C. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.
- D. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.
 - 1. Schedule times for tests, inspections, obtaining samples, and similar activities.
- E. Schedule of Tests and Inspections: Prepare a schedule of tests, inspections, and similar qualitycontrol services required by the Contract Documents as a component of Contractor's qualitycontrol plan. Coordinate and submit concurrently with Contractor's construction schedule. Update as the Work progresses.
 - 1. Distribution: Distribute schedule to Owner, Engineer, Commissioning Authority, testing agencies, and each party involved in performance of portions of the Work where tests and inspections are required.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TEST AND INSPECTION LOG

- A. Test and Inspection Log: Prepare a record of tests and inspections. Include the following:
 - 1. Date test or inspection was conducted.

QUALITY REQUIREMENTS

- 2. Description of the Work tested or inspected.
- 3. Date test or inspection results were transmitted to Engineer.
- 4. Identification of testing agency or special inspector conducting test or inspection.
- B. Maintain log at Project site. Post changes and revisions as they occur. Provide access to test and inspection log for Engineer's, Commissioning Authority's, reference during normal working hours.

3.2 REPAIR AND PROTECTION

- A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.
 - 1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. Comply with the Contract Document requirements for cutting and patching in Section 017300 "Execution."
- B. Protect construction exposed by or for quality-control service activities.
- C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

SECTION 230140 - TEMPORARY FACILITIES AND CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

PART 2 - PRODUCTS

2.1 EQUIPMENT

- A. HVAC Equipment:
 - 1. Use of gasoline-burning space heaters, open-flame heaters, or salamander-type heating units is prohibited.
 - 2. Permanent HVAC System: If Owner authorizes use of permanent HVAC system for temporary use during construction, provide filter with MERV of 11 at each return-air grille in system and remove at end of construction and clean HVAC system as required in Section 230100 "General Provisions for HVAC".

PART 3 - EXECUTION

3.1 TEMPORARY UTILITY INSTALLATION

- A. General: Install temporary service or connect to existing service.
 - 1. Arrange with utility company, Owner, and existing users for time when service can be interrupted, if necessary, to make connections for temporary services.
- B. Heating and Cooling: Provide temporary heating and cooling required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of low temperatures or high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed.
- C. Isolation of Work Areas in Occupied Facilities: Prevent dust, fumes, and odors from entering occupied areas.
 - 1. Prior to commencing work, isolate the HVAC system in area where work is to be performed according to coordination drawings.
 - a. Disconnect supply and return ductwork in work area from HVAC systems servicing occupied areas.

- D. Ventilation and Humidity Control: Provide temporary ventilation required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed. Coordinate ventilation requirements to produce ambient condition required and minimize energy consumption.
 - 1. Provide dehumidification systems when required to reduce substrate moisture levels to level required to allow installation or application of finishes.

3.2 MOISTURE AND MOLD CONTROL

- A. Contractor's Moisture-Protection Plan: Avoid trapping water in finished work. Document visible signs of mold that may appear during construction.
- B. Exposed Construction Phase: Before installation of weather barriers, when materials are subject to wetting and exposure and to airborne mold spores, protect as follows:
 - 1. Protect porous materials from water damage.
 - 2. Protect stored and installed material from flowing or standing water.
 - 3. Keep porous and organic materials from coming into prolonged contact with concrete.
- C. Partially Enclosed Construction Phase: After installation of weather barriers but before full enclosure and conditioning of building, when installed materials are still subject to infiltration of moisture and ambient mold spores, protect as follows:
 - 1. Discard or replace water-damaged material.
 - 2. Do not install material that is wet.
 - 3. Discard, replace, or clean stored or installed material that begins to grow mold.
- D. Controlled Construction Phase of Construction: After completing and sealing of the building enclosure but prior to the full operation of permanent HVAC systems, maintain as follows:
 - 1. Control moisture and humidity inside building by maintaining effective dry-in conditions.
 - 2. Use permanent HVAC system to control humidity.

SECTION 230150 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; and comparable products.
- B. Related Requirements:
 - 1. Section 230105 "Substitution Procedures" for requests for substitutions.

1.3 DEFINITIONS

- A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.
 - 1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature, that is current as of date of the Contract Documents.
 - 2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.
 - 3. Comparable Product: Product that is demonstrated and approved through submittal process to have the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.
- B. Basis-of-Design Product Specification: A specification in which a specific manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation, to establish the significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics for purposes of evaluating comparable products of additional manufacturers named in the specification.

1.4 ACTION SUBMITTALS

- A. Comparable Product Requests: Submit request for consideration of each comparable product. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 - 1. Include data to indicate compliance with the requirements specified in "Comparable Products" Article.
 - 2. Engineer's Action: If necessary, Engineer will request additional information or documentation for evaluation within one week of receipt of a comparable product request. Engineer will notify Contractor of approval or rejection of proposed comparable product request within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.
 - a. Form of Approval: As specified in Section 230120 "Submittal Procedures."
 - b. Use product specified if Engineer does not issue a decision on use of a comparable product request within time allocated.
- B. Basis-of-Design Product Specification Submittal: Comply with requirements in Section 230120 "Submittal Procedures." Show compliance with requirements.

1.5 QUALITY ASSURANCE

- A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.
 - 1. Each contractor is responsible for providing products and construction methods compatible with products and construction methods of other contractors.
 - 2. If a dispute arises between contractors over concurrently selectable but incompatible products, Engineer will determine which products shall be used.

1.6 PRODUCT DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.
- B. Delivery and Handling:
 - 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
 - 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
 - 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.

- 4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.
- C. Storage:
 - 1. Store products to allow for inspection and measurement of quantity or counting of units.
 - 2. Store materials in a manner that will not endanger Project structure.
 - 3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
 - 4. Protect foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
 - 5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
 - 6. Protect stored products from damage and liquids from freezing.
 - 7. Provide a secure location and enclosure at Project site for storage of materials and equipment by Owner's construction forces. Coordinate location with Owner.

1.7 PRODUCT WARRANTIES

- A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.
 - 1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
 - 2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.
- B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.
 - 1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
 - 2. Specified Form: When specified forms are included with the Specifications, prepare a written document using indicated form properly executed.
 - 3. See other Sections for specific content requirements and particular requirements for submitting special warranties.

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

- A. General Product Requirements: Provide products that comply with the Contract Documents, are undamaged and, unless otherwise indicated, are new at time of installation.
 - 1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.

- 2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.
- 3. Owner reserves the right to limit selection to products with warranties not in conflict with requirements of the Contract Documents.
- 4. Where products are accompanied by the term "as selected," Engineer will make selection.
- 5. Descriptive, performance, and reference standard requirements in the Specifications establish salient characteristics of products.
- 6. Or Equal: For products specified by name and accompanied by the term "or equal," or "or approved equal," or "or approved," comply with requirements in "Comparable Products" Article to obtain approval for use of an unnamed product.
- B. Product Selection Procedures:
 - 1. Product: Where Specifications name a single manufacturer and product, provide the named product that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
 - 2. Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
 - 3. Products:
 - a. Restricted List: Where Specifications include a list of names of both manufacturers and products, provide one of the products listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered unless otherwise indicated.
 - b. Nonrestricted List: Where Specifications include a list of names of both available manufacturers and products, provide one of the products listed, or an unnamed product, that complies with requirements. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product.
 - 4. Manufacturers:
 - a. Restricted List: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered unless otherwise indicated.
 - b. Nonrestricted List: Where Specifications include a list of available manufacturers, provide a product by one of the manufacturers listed, or a product by an unnamed manufacturer, that complies with requirements. Comply with requirements in "Comparable Products" Article for consideration of an unnamed manufacturer's product.
 - 5. Basis-of-Design Product: Where Specifications name a product, or refer to a product indicated on Drawings, and include a list of manufacturers, provide the specified or indicated product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product by one of the other named manufacturers.

C. Visual Selection Specification: Where Specifications include the phrase "as selected by Engineer from manufacturer's full range" or similar phrase, select a product that complies with requirements. Engineer will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

2.2 COMPARABLE PRODUCTS

- A. Conditions for Consideration: Engineer will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Engineer may return requests without action, except to record noncompliance with these requirements:
 - 1. Evidence that the proposed product does not require revisions to the Contract Documents, that it is consistent with the Contract Documents and will produce the indicated results, and that it is compatible with other portions of the Work.
 - 2. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.
 - 3. Evidence that proposed product provides specified warranty.
 - 4. List of similar installations for completed projects with project names and addresses and names and addresses of engineers and owners, if requested.
 - 5. Samples, if requested.

PART 3 - EXECUTION (Not Used)

This Page Left Intentionally Blank

SECTION 230160 - EXECUTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:
 - 1. Installation of the Work.
 - 2. Cutting and patching.
 - 3. Coordination of Owner-installed products.
 - 4. Progress cleaning.
 - 5. Starting and adjusting.
 - 6. Protection of installed construction.
 - 7. Correction of the Work.

1.3 DEFINITIONS

- A. Cutting: Removal of in-place construction necessary to permit installation or performance of other work.
- B. Patching: Fitting and repair work required to restore construction to original conditions after installation of other work.
- C. Concealed Work: Work hidden from view, including inside chases, furred spaces, above ceilings or on mezzanines.
- D. Exposed Work: Work open to view, including inside mechanical and equipment rooms.

1.4 QUALITY ASSURANCE

- A. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.
 - 1. Structural Elements: When cutting and patching structural elements, notify Engineer of locations and details of cutting and await directions from Engineer before proceeding. Shore, brace, and support structural elements during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection

- 2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety. Operational elements include the following:
 - a. Primary operational systems and equipment.
 - b. Fire separation assemblies.
 - c. Air or smoke barriers.
 - d. Fire-suppression systems.
 - e. Mechanical systems piping and ducts.
 - f. Control systems.
 - g. Communication systems.
 - h. Fire-detection and -alarm systems.
 - i. Conveying systems.
 - j. Electrical wiring systems.
 - k. Operating systems of special construction.
- 3. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety. Other construction elements include but are not limited to the following:
 - a. Water, moisture, or vapor barriers.
 - b. Membranes and flashings.
 - c. Exterior curtain-wall construction.
 - d. Sprayed fire-resistive material.
 - e. Equipment supports.
 - f. Piping, ductwork, vessels, and equipment.
 - g. Noise- and vibration-control elements and systems.
- 4. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Engineer's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.
- B. Manufacturer's Installation Instructions: Obtain and maintain on-site manufacturer's written recommendations and instructions for installation of products and equipment.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. General: Comply with requirements specified in other Sections.
- B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.
1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Engineer for the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Existing Conditions: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning sitework, investigate and verify the existence and location of underground utilities, mechanical and electrical systems, and other construction affecting the Work.
 - 1. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, and water-service piping; underground electrical services, and other utilities.
 - 2. Furnish location data for work related to Project that must be performed by public utilities serving Project site.
- B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.
 - 1. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.
 - 2. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.
 - 3. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.
- C. Written Report: Where a written report listing conditions detrimental to performance of the Work is required by other Sections, include the following:
 - 1. Description of the Work.
 - 2. List of detrimental conditions, including substrates.
 - 3. List of unacceptable installation tolerances.
 - 4. Recommended corrections.
- D. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Existing Utility Information: Furnish information to Owner that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction.

- B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
- C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.
- D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of Contractor, submit a request for information to Engineer.

3.3 INSTALLATION

- A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 - 1. Make vertical work plumb and make horizontal work level.
 - 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 - 3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.
 - 4. Maintain minimum headroom clearance of 96 inches (2440 mm) in occupied spaces and 90 inches (2300 mm) in unoccupied spaces.
- B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.
- C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.
- D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.
- E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.
- F. Tools and Equipment: Do not use tools or equipment that produce harmful noise levels.
- G. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.
- H. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.

- 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Engineer.
- 2. Allow for building movement, including thermal expansion and contraction.
- 3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.
- I. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.
- J. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.

3.4 CUTTING AND PATCHING

- A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.
 - 1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.
- B. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.
- C. Temporary Support: Provide temporary support of work to be cut.
- D. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.
- E. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to minimize interruption to occupied areas.
- F. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.
 - 1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 - 2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
 - 3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
 - 4. Excavating and Backfilling: Comply with requirements in applicable Sections where required by cutting and patching operations.

- 5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.
- 6. Proceed with patching after construction operations requiring cutting are complete.
- G. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.
 - 1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.
 - 2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.
 - a. Clean piping, conduit, and similar features before applying paint or other finishing materials.
 - b. Restore damaged pipe covering to its original condition.
 - 3. Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.
 - a. Where patching occurs in a painted surface, prepare substrate and apply primer and intermediate paint coats appropriate for substrate over the patch, and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.
 - 4. Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.
 - 5. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition and ensures thermal and moisture integrity of building enclosure.
- H. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.5 PROGRESS CLEANING

- A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.
 - 1. Comply with requirements in NFPA 241 for removal of combustible waste materials and debris.
 - 2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F (27 deg C).
 - 3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.

- a. Use containers intended for holding waste materials of type to be stored.
- B. Site: Maintain Project site free of waste materials and debris.
- C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.
 - 1. Remove liquid spills promptly.
 - 2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.
- D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.
- E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.
- F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.
- G. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.
- H. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.
- I. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.6 FINAL CLEANING

- A. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.
 - 1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:
 - a. Remove tools, construction equipment, machinery, and surplus material from Project site.
 - b. Remove labels that are not permanent.
 - c. Wipe surfaces of equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
 - d. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.

- e. Clean ducts, blowers, and coils if units were operated during construction or that display contamination with particulate matter on inspection.
 - 1) Clean HVAC system in compliance with NADCA Standard 1992-01. Provide written report on completion of cleaning.

3.7 REPAIR OF WORK

- A. Complete repair and restoration operations before requesting inspection for determination of Substantial Completion.
- B. Repair or remove and replace defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.
 - 1. Touch up and otherwise repair and restore marred or exposed finishes and surfaces. Replace finishes and surfaces that that already show evidence of repair or restoration.
 - a. Do not paint over "UL" and other required labels and identification, including mechanical and electrical nameplates. Remove paint applied to required labels and identification.
 - 2. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.

3.8 STARTING AND ADJUSTING

- A. Coordinate startup and adjusting of equipment and operating components with requirements in Section 019113 "General Commissioning Requirements."
- B. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.
- C. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.
- D. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- E. Provide complete and working charge of proper refrigerant, free of contaminants, into each refrigerant system. After each system has been in operation long enough to insure completely balanced conditions, check the charge and modify it for proper operation as required.
- F. Provide a complete charge of special oil for refrigeration use, suitable for operation with refrigerant, in each compressor.

- G. Manufacturer's Field Service: Comply with qualification requirements in Section 230130 "Quality Requirements."
- H. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.9 PROTECTION OF INSTALLED CONSTRUCTION

- A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.
- B. Comply with manufacturer's written instructions for temperature and relative humidity.

This Page Left Intentionally Blank

SECTION 230170 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 - 1. Operation and maintenance documentation directory.
 - 2. Operation manuals for systems, subsystems, and equipment.
 - 3. Product maintenance manuals.
 - 4. Systems and equipment maintenance manuals.
- B. Related Requirements:
 - 1. Section 230115 "Submittal Procedures" for submitting copies of submittals for operation and maintenance manuals.
 - 2. Section 019113 "General Commissioning Requirements" for verification and compilation of data into operation and maintenance manuals.

1.3 DEFINITIONS

- A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.
- B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 CLOSEOUT SUBMITTALS

- A. Manual Content: Operations and maintenance manual content is specified in individual Specification Sections to be reviewed at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.
 - 1. Engineer and Commissioning Authority will comment on whether content of operations and maintenance submittals are acceptable.
 - 2. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.
- B. Format: Submit operations and maintenance manuals in the following format:

- 1. PDF electronic file. Assemble each manual into a composite electronically indexed file. Submit on digital media acceptable to Engineer.
 - a. Name each indexed document file in composite electronic index with applicable item name. Include a complete electronically linked operation and maintenance directory.
 - b. Enable inserted reviewer comments on draft submittals.
- C. Initial Manual Submittal: Submit draft copy of each manual at least 60 days before commencing demonstration and training. Engineer and Commissioning Authority will comment on whether general scope and content of manual are acceptable.
- D. Final Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Engineer and Commissioning Authority will return copy with comments.
 - 1. Correct or revise each manual to comply with Engineer's and Commissioning Authority's comments. Submit copies of each corrected manual within 15 days of receipt of Engineer's and Commissioning Authority's comments and prior to commencing demonstration and training.

PART 2 - PRODUCTS

2.1 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY

- A. Directory: Prepare a single, comprehensive directory of emergency, operation, and maintenance data and materials, listing items and their location to facilitate ready access to desired information. Include a section in the directory for each of the following:
 - 1. List of documents.
 - 2. List of systems.
 - 3. List of equipment.
 - 4. Table of contents.
- B. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.
- C. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list.
- D. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.
- E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents. If no designation exists, assign a designation according to ASHRAE Guideline 4, "Preparation of Operating and Maintenance Documentation for Building Systems."

2.2 REQUIREMENTS FOR OPERATION AND MAINTENANCE MANUALS

- A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:
 - 1. Title page.
 - 2. Table of contents.
 - 3. Manual contents.
- B. Title Page: Include the following information:
 - 1. Subject matter included in manual.
 - 2. Name and address of Project.
 - 3. Name and address of Owner.
 - 4. Date of submittal.
 - 5. Name and contact information for Contractor.
 - 6. Name and contact information for Construction Manager.
 - 7. Name and contact information for Engineer.
 - 8. Name and contact information for Commissioning Authority.
 - 9. Names and contact information for major consultants to the Engineer that designed the systems contained in the manuals.
 - 10. Cross-reference to related systems in other operation and maintenance manuals.
- C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
 - 1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.
- D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.
- E. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.
 - 1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
 - 2. File Names and Bookmarks: Enable bookmarking of individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.

2.3 OPERATION MANUALS

- A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 - 1. System, subsystem, and equipment descriptions. Use designations for systems and equipment indicated on Contract Documents.
 - 2. Performance and design criteria if Contractor has delegated design responsibility.
 - 3. Operating standards.
 - 4. Operating procedures.
 - 5. Operating logs.
 - 6. Wiring diagrams.
 - 7. Control diagrams.
 - 8. Piped system diagrams.
 - 9. Precautions against improper use.
 - 10. License requirements including inspection and renewal dates.
- B. Descriptions: Include the following:
 - 1. Product name and model number. Use designations for products indicated on Contract Documents.
 - 2. Manufacturer's name.
 - 3. Equipment identification with serial number of each component.
 - 4. Equipment function.
 - 5. Operating characteristics.
 - 6. Limiting conditions.
 - 7. Performance curves.
 - 8. Engineering data and tests.
 - 9. Complete nomenclature and number of replacement parts.
- C. Operating Procedures: Include the following, as applicable:
 - 1. Startup procedures.
 - 2. Equipment or system break-in procedures.
 - 3. Routine and normal operating instructions.
 - 4. Regulation and control procedures.
 - 5. Instructions on stopping.
 - 6. Normal shutdown instructions.
 - 7. Seasonal and weekend operating instructions.
 - 8. Required sequences for electric or electronic systems.
 - 9. Special operating instructions and procedures.
- D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.
- E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.4 PRODUCT MAINTENANCE MANUALS

- A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.
- B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.
- C. Product Information: Include the following, as applicable:
 - 1. Product name and model number.
 - 2. Manufacturer's name.
 - 3. Color, pattern, and texture.
 - 4. Material and chemical composition.
 - 5. Reordering information for specially manufactured products.
- D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 - 1. Inspection procedures.
 - 2. Types of cleaning agents to be used and methods of cleaning.
 - 3. List of cleaning agents and methods of cleaning detrimental to product.
 - 4. Schedule for routine cleaning and maintenance.
 - 5. Repair instructions.
- E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.
- F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

2.5 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

- A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.
- B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.

- C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:
 - 1. Standard maintenance instructions and bulletins.
 - 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 - 3. Identification and nomenclature of parts and components.
 - 4. List of items recommended to be stocked as spare parts.
- D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 - 1. Test and inspection instructions.
 - 2. Troubleshooting guide.
 - 3. Precautions against improper maintenance.
 - 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - 5. Aligning, adjusting, and checking instructions.
 - 6. Demonstration and training video recording, if available.
- E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
 - 1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
 - 2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.
- F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.
- G. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.
- H. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

- A. Operation and Maintenance Documentation Directory: Prepare a separate manual that provides an organized reference to emergency, operation, and maintenance manuals.
- B. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

- C. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
 - 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
 - 2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.
- D. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
 - 1. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.
- E. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.
 - 1. Do not use original project record documents as part of operation and maintenance manuals.
 - 2. Comply with requirements of newly prepared record Drawings in Section 230180 "Project Record Documents."

This Page Left Intentionally Blank

SECTION 230190 - DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for instructing Owner's personnel, including the following:
 - 1. Demonstration of operation of systems, subsystems, and equipment.
 - 2. Training in operation and maintenance of systems, subsystems, and equipment.
 - 3. Demonstration and training video recordings.

1.3 INFORMATIONAL SUBMITTALS

- A. Instruction Program: Submit outline of instructional program for demonstration and training, including a list of training modules and a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module.
 - 1. Indicate proposed training modules using manufacturer-produced demonstration and training video recordings for systems, equipment, and products in lieu of video recording of live instructional module.
- B. Attendance Record: For each training module, submit list of participants and length of instruction time.

1.4 CLOSEOUT SUBMITTALS

- A. Demonstration and Training Video Recordings: Submit two copies within seven days of end of each training module.
 - 1. Identification: On each copy, provide an applied label with the following information:
 - a. Name of Project.
 - b. Name and address of videographer.
 - c. Name of Engineer.
 - d. Name of Construction Manager.
 - e. Name of Contractor.
 - f. Date of video recording.

- 2. Transcript: Prepared in PDF electronic format. Include a cover sheet with same label information as the corresponding video recording and a table of contents with links to corresponding training components. Include name of Project and date of video recording on each page.
- 3. At completion of training, submit complete training manual(s) for Owner's use in PDF electronic file format on flash drive.

1.5 COORDINATION

- A. Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations and to ensure availability of Owner's personnel.
- B. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
- C. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by Engineer.

PART 2 - PRODUCTS

2.1 INSTRUCTION PROGRAM

- A. Program Structure: Develop an instruction program that includes individual training modules for each system and for equipment not part of a system, as required by individual Specification Sections.
- B. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following as applicable to the system, equipment, or component:
 - 1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Performance and design criteria if Contractor is delegated design responsibility.
 - c. Operating standards.
 - d. Regulatory requirements.
 - e. Equipment function.
 - f. Operating characteristics.
 - g. Limiting conditions.
 - h. Performance curves.
 - 2. Documentation: Review the following items in detail:
 - a. Operations manuals.
 - b. Maintenance manuals.
 - c. Project record documents.

- d. Identification systems.
- e. Warranties and bonds.
- f. Maintenance service agreements and similar continuing commitments.
- 3. Emergencies: Include the following, as applicable:
 - a. Instructions on meaning of warnings, trouble indications, and error messages.
 - b. Instructions on stopping.
 - c. Shutdown instructions for each type of emergency.
 - d. Operating instructions for conditions outside of normal operating limits.
 - e. Sequences for electric or electronic systems.
 - f. Special operating instructions and procedures.
- 4. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.
 - c. Routine and normal operating instructions.
 - d. Regulation and control procedures.
 - e. Control sequences.
 - f. Safety procedures.
 - g. Instructions on stopping.
 - h. Normal shutdown instructions.
 - i. Operating procedures for emergencies.
 - j. Operating procedures for system, subsystem, or equipment failure.
 - k. Seasonal and weekend operating instructions.
 - 1. Required sequences for electric or electronic systems.
 - m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.
 - c. Noise and vibration adjustments.
 - d. Economy and efficiency adjustments.
- 6. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.
 - g. Instruction on use of special tools.

- 8. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.
 - e. Review of spare parts needed for operation and maintenance.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a training manual organized in coordination with requirements in Section 017823 "Operation and Maintenance Data."
- B. Set up instructional equipment at instruction location.

3.2 INSTRUCTION

- A. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - 1. Engineer will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.
 - 2. Owner will furnish an instructor to describe Owner's operational philosophy.
 - 3. Owner will furnish Contractor with names and positions of participants.
- B. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.
 - 1. Schedule training with Owner, through Engineer, with at least seven days' advance notice.
- C. Training Location and Reference Material: Conduct training on-site in the completed and fully operational facility using the actual equipment in-place. Conduct training using final operation and maintenance data submittals.
- D. Cleanup: Collect used and leftover educational materials and give to Owner. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

3.3 DEMONSTRATION AND TRAINING VIDEO RECORDINGS

A. General: Engage a qualified commercial videographer to record demonstration and training video recordings. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice.

- 1. At beginning of each training module, record each chart containing learning objective and lesson outline.
- B. Video: Provide minimum 640 x 480 video resolution converted to .mp4 format file type , on electronic media.
 - 1. Electronic Media: Read-only format compact disc acceptable to Owner, with commercial-grade graphic label.
 - 2. File Hierarchy: Organize folder structure and file locations according to project manual table of contents. Provide complete screen-based menu.
 - 3. File Names: Utilize file names based upon name of equipment generally described in video segment, as identified in Project specifications.
 - 4. Contractor and Installer Contact File: Using appropriate software, create a file for inclusion on the Equipment Demonstration and Training DVD that describes the following for each Contractor involved on the Project, arranged according to Project table of contents:
 - a. Name of Contractor/Installer.
 - b. Business address.
 - c. Business phone number.
 - d. Point of contact.
 - e. E-mail address.
- C. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to adequately cover area of demonstration and training. Display continuous running time.
 - 1. Film training session(s) in segments not to exceed 15 minutes.
 - a. Produce segments to present a single significant piece of equipment per segment.
 - b. Organize segments with multiple pieces of equipment to follow order of Project Manual table of contents.
 - c. Where a training session on a particular piece of equipment exceeds 15 minutes, stop filming and pause training session. Begin training session again upon commencement of new filming segment.
- D. Light Levels: Verify light levels are adequate to properly light equipment. Verify equipment markings are clearly visible prior to recording.
 - 1. Furnish additional portable lighting as required.
- E. Narration: Describe scenes on video recording by audio narration by microphone while or dubbing audio narration off-site after video recording is recorded. Include description of items being viewed.
- F. Preproduced Video Recordings: Provide video recordings used as a component of training modules in same format as recordings of live training.

This Page Left Intentionally Blank

SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with NEMA MG 1 unless otherwise indicated.
- B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet (1000 m) above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Premium efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Power Factor: 0.80.
- E. Rotor: Random-wound, squirrel cage.
- F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- G. Temperature Rise: Match insulation rating.
- H. Insulation: Class F.
- I. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- J. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable Frequency Controllers:
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
- C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

This Page Left Intentionally Blank

SECTION 230516 - EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Flexible-hose packless expansion joints.
 - 2. Rubber packless expansion joints.

1.3 PERFORMANCE REQUIREMENTS

- A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.
- B. Capability: Products to absorb 200 percent of maximum axial movement between anchors.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of expansion joint, from manufacturer.

PART 2 - PRODUCTS

2.1 PACKLESS EXPANSION JOINTS

- A. Flexible-Hose Packless Expansion Joints:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Twin City Hose, Inc.; TCHS (steel pipe) or comparable product by one of the following:
 - a. <u>Flex-Hose Co., Inc</u>.
 - b. Metraflex, Inc.; SST / MLP (steel).

- 2. Flexible Hose: Corrugated-metal inner hoses and braided outer sheaths.
- 3. Expansion Joints for Steel Piping NPS 2 (DN 50) and Smaller: Carbon-steel fittings with threaded end connections.
 - a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 450 psig at 70 deg F (3100 kPa at 21 deg C) and 325 psig at 600 deg F (2250 kPa at 315 deg C) ratings.
- B. Rubber Packless Expansion Joints:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Twin City Hose, Inc.; MST or comparable product by one of the following:
 - a. <u>Mason Industries, Inc.; Mercer Rubber Co.</u>
 - b. <u>Metraflex, Inc</u> TSUC or DSRC series.
 - 2. Standards: ASTM F 1123 and FSA's "Technical Handbook: Non-Metallic Expansion Joints and Flexible Pipe Connectors."
 - 3. Material: Fabric-reinforced rubber complying with FSA-NMEJ-703.
 - 4. Spherical Type: Multiple spheres.
 - 5. Minimum Pressure Rating for NPS 1-1/2 to NPS 4 (DN 40 to DN 100): 150 psig (1035 kPa) at 220 deg F (104 deg C).
 - 6. Minimum Pressure Rating for NPS 5 and NPS 6 (DN 125 and DN 150): 140 psig (966 kPa) at 200 deg F (93 deg C).
 - 7. Material for Water: EPDM.
 - 8. End Connections: Full-faced, integral steel flanges with steel retaining rings.

PART 3 - EXECUTION

3.1 EXPANSION-JOINT INSTALLATION

- A. Install expansion joints of sizes matching sizes of piping in which they are installed.
- B. Install rubber packless expansion joints according to FSA-NMEJ-702.

3.2 EXPANSION-JOINT SCHEDULE

- A. Chiller Evaporator Connections: Rubber packless expansion joints.
- B. Boiler Connections: Rubber packless expansion joints.
- C. Hydronic Pump Suction and Discharge: Rubber packless expansion joints.
- D. Air Handling Unit Hydronic Coil Connections: Rubber packless expansion joints.
- E. Fan Coil Unit Hydronic Coil Connections: Flexible-hose packless expansion joints.
- F. Terminal Unit Hydronic Coil Connections: Flexible-hose packless expansion joints.

This Page Left Intentionally Blank

SECTION 230517 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal systems.
 - 3. Sleeve-seal fittings.
 - 4. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

2.2 SLEEVE-SEAL SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Advance Products & Systems, Inc.</u>
 - 2. <u>Metraflex Company (The)</u>.
 - 3. <u>Pipeline Seal and Insulator, Inc</u>.
- B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Plastic.

3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch (25-mm) annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level.
 - 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.

- 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel-pipe sleeves.
 - 2. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 4 (DN 100): Sleeve-seal fittings.
 - b. Piping NPS 4 (DN 100) and Larger: Galvanized-steel-pipe sleeves with sleeveseal system.
 - 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel-pipe sleeves.

SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

- Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves. b.
- 4. Interior Partitions:
 - Piping Smaller Than NPS 6 (DN 150): Galvanized-steel-pipe sleeves. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves. a.
 - b.

SECTION 230518 - ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

ESCUTCHEONS FOR HVAC PIPING

- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Insulated Piping: One-piece, stamped-steel type.
 - c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, castbrass type with polished, chrome-plated finish.
 - d. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 - e. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with roughbrass finish.
 - f. Bare Piping in Equipment Rooms: One-piece, cast-brass type with rough-brass finish.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.
SECTION 230519 - METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Liquid-in-glass thermometers.
 - 2. Thermowells.
 - 3. Dial-type pressure gages.
 - 4. Gage attachments.
 - 5. Test plugs.
 - 6. Test-plug kits.
 - 7. Electromagnetic flowmeters.
 - 8. Venturi flowmeters.
 - 9. Thermal-energy meters.
- B. Related Sections:
 - 1. Section 231123 "Facility Natural-Gas Piping" for gas meters.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage, from manufacturer.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS

- A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Trerice, H.O. Co.; BX9 or comparable product by one of the following:
 - a. <u>Miljoco Corporation</u>.
 - b. <u>Weiss Instruments, Inc</u>.
 - c. <u>Winters Instruments U.S</u>.
 - 2. Standard: ASME B40.200.
 - 3. Case: Cast aluminum; 9-inch (229-mm) nominal size unless otherwise indicated.
 - 4. Case Form: Adjustable angle unless otherwise indicated.
 - 5. Tube: Glass with magnifying lens and blue organic liquid.
 - 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F (deg C).
 - 7. Window: Glass.
 - 8. Stem: Brass and of length to suit installation.
 - a. Design for Air-Duct Installation: Provide aluminum ventilated air-duct stem with 3-inch O.D. reversible aluminum flange and perforated aluminum guard.
 - b. Design for Thermowell Installation: Bare stem.
 - 9. Connector: 1-1/4 inches (32 mm), with ASME B1.1 screw threads.
 - 10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 DUCT-THERMOMETER MOUNTING BRACKETS

A. Description: Flanged bracket with screw holes, for attachment to air duct and made to hold thermometer stem.

2.3 THERMOWELLS

- A. Thermowells:
 - 1. Standard: ASME B40.200.
 - 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 - 3. Material for Use with Steel Piping: CRES (stainless steel).
 - 4. Type: Stepped shank unless straight or tapered shank is indicated.
 - 5. External Threads: NPS 1/2, NPS 3/4, or NPS 1, (DN 15, DN 20, or NPS 25,) ASME B1.20.1 pipe threads.
 - 6. Internal Threads: 1/2, 3/4, and 1 inch (13, 19, and 25 mm), with ASME B1.1 screw threads.
 - 7. Bore: Diameter required to match thermometer bulb or stem.

- 8. Insertion Length: Length required to match thermometer bulb or stem.
- 9. Lagging Extension: Include on thermowells for insulated piping and tubing.
- 10. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.4 PRESSURE GAGES

- A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Trerice, H.O. Co.; 600CB or comparable product by one of the following:
 - a. <u>Ashcroft Inc</u>.
 - b. <u>Miljoco Corporation</u>.
 - c. <u>Weiss Instruments, Inc</u>.
 - d. <u>Winters Instruments U.S.</u>
 - 2. Standard: ASME B40.100.
 - 3. Case: Solid-front, pressure relief type(s); cast aluminum; 4-1/2-inch (114-mm) nominal diameter; provide weatherproofed case for outdoor installations; provide back flange kit for surface mount applications.
 - 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 - 5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2 (DN 8 or DN 15), ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 - 6. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi (kPa).
 - 8. Pointer: Dark-colored metal.
 - 9. Window: Glass.
 - 10. Ring: Stainless steel.
 - 11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.5 GAGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2 (DN 8 or DN 15), ASME B1.20.1 pipe threads and porous-metal-type surge-dampening device. Include extension for use on insulated piping.
- B. Valves: Brass ball, with NPS 1/4 or NPS 1/2 (DN 8 or DN 15), ASME B1.20.1 pipe threads.

2.6 TEST PLUGS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Peterson Equipment Co., Inc.; Model 110 XL or comparable product by one of the following:
 - 1. <u>Sisco Manufacturing Company, Inc</u>.

METERS AND GAGES FOR HVAC PIPING

- 2. <u>Trerice, H. O. Co</u>.
- 3. <u>Weiss Instruments, Inc</u>.
- B. Description: Test-station fitting made for insertion into piping tee fitting.
- C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.
- D. Thread Size: NPS 1/4 (DN 8), ASME B1.20.1 pipe thread.
- E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F (3450 kPa at 93 deg C).
- F. Core Inserts: EPDM self-sealing rubber.

2.7 TEST-PLUG KITS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Peterson Equipment Co., Inc.; Model 1500XL or comparable product by one of the following:
 - 1. <u>Miljoco Corporation</u>.
 - 2. <u>Sisco Manufacturing Company, Inc</u>.
 - 3. <u>Trerice, H. O. Co.</u>
 - 4. <u>Weiss Instruments, Inc</u>.
- B. Furnish one test-plug kit(s) containing one thermometer(s), one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.
- C. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- (25- to 51-mm-) diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg F (minus 4 to plus 52 deg C).
- D. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- (25- to 51-mm-) diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F (minus 18 to plus 104 deg C).
- E. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch- (51- to 76-mm-) diameter dial and probe. Dial range shall be at least 0 to 200 psig (0 to 1380 kPa).
- F. Carrying Case: Metal or plastic, with formed instrument padding.

2.8 FLOWMETERS

- A. Electromagnetic Insertion Flowmeters:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide ONICON, Inc.; F-3500 or comparable product by one of the following:
 - a. <u>ABB; Instrumentation and Analytical</u>.
 - b. <u>Data Industrial Corp</u>.

- c. <u>EMCO Flow Systems; a division of Spirax Sarco, Inc</u>.
- 2. Description: Flowmeter with sensor.
- 3. Flow Range: Sensor and indicator shall cover operating range of equipment or system served.
- 4. Sensor: Dual electrode; for inserting into pipe fitting and measuring flow directly in gallons per minute (liters per second).
 - a. Design: Device or pipe fitting with integral direct-reading scale for water .
 - b. Construction: 316 stainless-steel body, with no moving parts.
 - c. Minimum Pressure Rating: 400 psig (2760 kPa).
 - d. Minimum Temperature Rating: 250 deg F (121 deg C).
- 5. Hot Tap Isolation Valve: 1-1/4" (DN 32) full port stainless steel ball valve.
- 6. Accuracy: Plus or minus 1 percent.
- 7. Operating Instructions: Include complete instructions with each flowmeter.
- B. Venturi Flowmeters:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Griswold Controls; 3Q??0T Metering Station or comparable product by one of the following:
 - a. <u>ABB; Instrumentation and Analytical</u>.
 - b. <u>Gerand Engineering Co</u>.
 - 2. Description: Flowmeter with calibrated flow-measuring element, hoses or tubing, fittings, valves, indicator, and conversion chart.
 - 3. Flow Range: Sensor and indicator shall cover operating range of equipment or system served.
 - 4. Sensor: Venturi-type, calibrated, flow-measuring element; for installation in piping.
 - a. Design: Differential-pressure-type measurement for water .
 - b. Construction: Bronze, brass, or factory-primed steel, with brass fittings and attached tag with flow conversion data.
 - c. Minimum Pressure Rating: 240 psig (1656 kPa).
 - d. Minimum Temperature Rating: 250 deg F (121 deg C).
 - e. End Connections for NPS 2 (DN 50) and Smaller: Threaded.
 - f. End Connections for NPS 2-1/2 (DN 65) and Larger: Flanged or welded.
 - g. Flow Range: Flow-measuring element and flowmeter shall cover operating range of equipment or system served.
 - 5. Portable Indicators: Hand-held, differential-pressure type, calibrated for connected flowmeter element and having two 12-foot (3.7-m) hoses, with carrying case.
 - a. Scale: Gallons per minute (Liters per second).
 - b. Accuracy: Plus or minus 2 percent between 20 and 80 percent of scale range.
 - 6. Conversion Chart: Flow rate data compatible with sensor.
 - 7. Operating Instructions: Include complete instructions with each flowmeter.

2.9 THERMAL-ENERGY METERS

- A. Thermal-Energy Meters:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide ONICON, Inc.; System - 10 or comparable product by one of the following:
 - a. <u>Data Industrial Corp</u>.
 - b. <u>Hoffer Flow Controls, Inc</u>.
 - 2. Description: System with flow sensor, temperature sensors, transmitter, indicator, and connecting wiring.
 - 3. Flow Sensor: Electromagnetic as specified herein.
 - 4. Temperature Sensors: Insertion-type transducer.
 - 5. Indicator: Solid-state, integrating-type meter with integral battery pack; for wall mounting.
 - a. Data Output: Six-digit electromechanical counter with readout in kilowatts per hour or British thermal units (joules).
 - b. Battery Pack: Five-year lithium battery.
 - 6. Accuracy: Plus or minus 1 percent.
 - 7. Display: Visually indicates total fluid volume in gallons (liters) and thermal-energy flow in kilowatts per hour or British thermal units (joules).
 - 8. Strainer: Full size of main line piping.
 - 9. Operating Instructions: Include complete instructions with each thermal-energy meter system.
 - 10. Interface: BACnet MS/TP compatable.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install thermowells with socket extending a minimum of 2 inches (51 mm) into fluid and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
- F. Install duct-thermometer mounting brackets in walls of ducts. Attach to duct with screws.
- G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

- H. Install valve and snubber in piping for each pressure gage for fluids (except steam).
- I. Install test plugs in piping tees.
- J. Assemble and install connections, tubing, and accessories between flow-measuring elements and flowmeters according to manufacturer's written instructions.
- K. Install flowmeter elements in accessible positions in piping systems.
- L. Install flowmeter elements, with at least minimum straight lengths of pipe, upstream and downstream from element according to manufacturer's written instructions.
- M. Install connection fittings in accessible locations for attachment to portable indicators.
- N. Mount thermal-energy meters on wall if accessible; if not, provide brackets to support meters.
- O. Install thermometers in the following locations:
 - 1. Inlet and outlet of each hydronic zone.
 - 2. Inlet and outlet of each hydronic boiler.
 - 3. Inlet and outlet of each chiller.
 - 4. Inlet and outlet of each hydronic coil in air-handling units.
 - 5. Air handler supply air ducts with an airflow of 2000 cfm or greater.
- P. Install pressure gages in the following locations:
 - 1. Discharge of each pressure-reducing valve.
 - 2. Inlet and outlet of each chiller chilled-water connection.
 - 3. Inlet and outlet of each hydronic boiler.
 - 4. Suction and discharge of each pump.
 - 5. Inlet and outlet of each air handling unit hydronic coil.
- Q. Install test plugs in the following locations:
 - 1. Inlet and outlet of each hydronic coil.
 - 2. Inlet and outlet of each pressure independent control valve.

3.2 CONNECTIONS

- A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.
- B. Connect thermal-energy meter transmitters to meters.

3.3 ADJUSTING

- A. After installation, calibrate meters according to manufacturer's written instructions.
- B. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

- A. Thermometers at inlet and outlet of each hydronic zone shall be the following:
 - 1. Industrial-style, liquid-in-glass type.
- B. Thermometers at inlet and outlet of each hydronic boiler shall be the following:
 - 1. Industrial-style, liquid-in-glass type.
 - 2. Test plug with EPDM self-sealing rubber inserts shall be provided in addition to industrial or remote mounted thermometers.
- C. Thermometers at inlets and outlets of each chiller shall be the following:
 - 1. Industrial-style, liquid-in-glass type.
 - 2. Test plug with EPDM self-sealing rubber inserts shall be provided in addition to industrial or remote mounted thermometers.
- D. Thermometers at inlet and outlet of each hydronic coil in air-handling units and built-up central systems shall be the following:
 - 1. Industrial-style, liquid-in-glass type.
 - 2. Test plug with EPDM self-sealing rubber inserts shall be provided in addition to industrial or remote mounted thermometers.
- E. Thermometers at supply-air ducts shall be the following:
 - 1. Industrial-style, liquid-in-glass type.
- F. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Chilled-Water Piping: 0 to 100 deg F (Minus 20 to plus 50 deg C).
- B. Scale Range for Heating, Hot-Water Piping: 20 to 240 deg F (0 to 150 deg C).
- C. Scale Range for Air Ducts: 0 to 150 deg F (Minus 20 to plus 70 deg C).

3.6 PRESSURE-GAGE SCHEDULE

- A. Pressure gages at discharge of each pressure-reducing valve shall be the following:
 - 1. Solid-front, pressure-relief, direct mounted, metal case.
- B. Pressure gages at inlet and outlet of each chiller chilled-water connection shall be the following:
 - 1. Solid-front, pressure-relief, direct mounted, metal case.
 - 2. Test plug with EPDM self-sealing rubber inserts shall be provided in addition to direct mounted gages.

- C. Pressure gages at inlet and outlet of each boiler hot-water connection shall be the following:
 - 1. Solid-front, pressure-relief, direct mounted, metal case.
 - 2. Test plug with EPDM self-sealing rubber inserts shall be provided in addition to direct mounted gages.
- D. Pressure gages at suction and discharge of each pump shall be the following:
 - 1. Solid-front, pressure-relief, direct mounted, metal case.
 - 2. Test plug with EPDM self-sealing rubber inserts shall be provided in addition to direct mounted gages.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

- A. Scale Range for Chilled-Water Piping: 0 to 160 psi (0 to 1100 kPa).
- B. Scale Range for Heating, Hot-Water Piping: 0 to 160 psi (0 to 1100 kPa).

3.8 FLOWMETER SCHEDULE

- A. Flowmeters for Chilled-Water Piping: Provide Electromagnetic for Building Automation System and Venturi type as indicated on plans for testing, adjusting and balancing.
- B. Flowmeters for Heating, Hot-Water Piping: Provide Electromagnetic for Building Automation System and Venturi type as indicated on plans for testing, adjusting and balancing.

END OF SECTION 230519

This Page Left Intentionally Blank

SECTION 230523 - GENERAL-DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bronze angle valves.
 - 2. Bronze ball valves.
 - 3. Iron, single-flange butterfly valves.
 - 4. Bronze swing check valves.
 - 5. Iron, center-guided check valves.
 - 6. Bronze globe valves.
- B. Related Sections:
 - 1. Division 23 HVAC piping Sections for specialty valves applicable to those Sections only.
 - 2. Division 23 Section "Identification for HVAC Piping and Equipment" for valve tags and schedules.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Nonrising stem.
- E. OS&Y: Outside screw and yoke.
- F. RS: Rising stem.
- G. SWP: Steam working pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve indicated.

GENERAL-DUTY VALVES FOR HVAC PIPING

1.5 QUALITY ASSURANCE

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.9 for building services piping valves.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to HVAC valve schedule articles for applications of valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:
 - 1. Handwheel: For valves other than quarter-turn types.
 - 2. Handlever: For quarter-turn valves NPS 6 (DN 150) and smaller except plug valves.
- E. Valves in Insulated Piping: With 2-inch (50-mm) stem extensions and the following features:

- 1. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
- 2. Butterfly Valves: With extended neck.
- F. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 - 2. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE ANGLE VALVES

- A. Class 150, Bronze Angle Valves with Nonmetallic Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - a. Hammond Valve.
 - b. Milwaukee Valve Company.
 - c. NIBCO INC.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 2.
 - b. CWP Rating: 300 psig (2070 kPa).
 - c. Body Material: ASTM B 62, bronze with integral seat and union-ring bonnet.
 - d. Ends: Threaded.
 - e. Stem: Bronze.
 - f. Disc: PTFE or TFE.
 - g. Packing: Asbestos free.
 - h. Handwheel: Malleable iron.

2.3 BRONZE BALL VALVES

- A. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. Milwaukee Valve Company.
 - c. NIBCO INC.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig (1035 kPa).

- c. CWP Rating: 600 psig (4140 kPa).
- d. Body Design: Two piece.
- e. Body Material: Bronze.
- f. Ends: Threaded.
- g. Seats: PTFE or TFE.
- h. Stem: Stainless steel.
- i. Ball: Stainless steel, vented.
- j. Port: Full.

2.4 IRON, SINGLE-FLANGE BUTTERFLY VALVES

- A. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum-Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - a. Milwaukee Valve Company.
 - b. NIBCO INC.
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-67, Type I.
 - b. CWP Rating: 200 psig (1380 kPa).
 - c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 - d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 - e. Seat: EPDM.
 - f. Stem: One- or two-piece stainless steel.
 - g. Disc: Aluminum bronze.

2.5 BRONZE SWING CHECK VALVES

- A. Class 150, Bronze Swing Check Valves with Nonmetallic Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - a. Milwaukee Valve Company.
 - b. NIBCO INC.
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 4.
 - b. CWP Rating: 300 psig (2070 kPa).
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded.

f. Disc: PTFE or TFE.

2.6 IRON, CENTER-GUIDED CHECK VALVES

- A. Class 125, Iron, Globe, Center-Guided Check Valves with Metal Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - a. Milwaukee Valve Company.
 - b. Mueller Steam Specialty; a division of SPX Corporation.
 - c. NIBCO INC.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-125.
 - b. NPS 2-1/2 to NPS 12 (DN 65 to DN 300), CWP Rating: 200 psig (1380 kPa).
 - c. Body Material: ASTM A 126, gray iron.
 - d. Style: Globe, spring loaded.
 - e. Ends: Flanged.
 - f. Seat: Bronze.

2.7 BRONZE GLOBE VALVES

- A. Class 150, Bronze Globe Valves with Nonmetallic Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - a. Milwaukee Valve Company.
 - b. NIBCO INC.
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 2.
 - b. CWP Rating: 300 psig (2070 kPa).
 - c. Body Material: ASTM B 62, bronze with integral seat and union-ring bonnet.
 - d. Ends: Threaded.
 - e. Stem: Bronze.
 - f. Disc: PTFE or TFE.
 - g. Packing: Asbestos free.
 - h. Handwheel: Malleable iron.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Center-Guided Check Valves: In horizontal or vertical position, between flanges.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball or butterfly valves.
 - 2. Butterfly Valve Dead-End Service: Single-flange (lug) type.
 - 3. Throttling Service except Steam: Globe or angle valves.
 - 4. Pump-Discharge Check Valves:

- a. NPS 2 (DN 50) and Smaller: Bronze swing check valves with nonmetallic disc.
- b. NPS 2-1/2 (DN 65) and Larger: Center-guided, metal -seat check valves.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Steel Piping, NPS 2 (DN 50) and Smaller: Threaded ends.
 - 2. For Steel Piping, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Steel Piping, NPS 5 (DN 125) and Larger: Flanged ends.

3.5 CHILLED-WATER VALVE SCHEDULE

- A. Pipe NPS 2 (DN 50) and Smaller:
 - 1. Bronze Angle Valves: Class 150, nonmetallic disc.
 - 2. Ball Valves: Two piece, full port, bronze with stainless-steel trim.
 - 3. Bronze Swing Check Valves: Class 150, nonmetallic disc.
 - 4. Bronze Globe Valves: Class 150, nonmetallic disc.
- B. Pipe NPS 2-1/2 (DN 65) and Larger:
 - 1. Iron, Single-Flange Butterfly Valves, NPS 2-1/2 to NPS 12 (DN 65 to DN 300): 200 CWP, EPDM seat, aluminum-bronze disc.
 - 2. Iron, Center-Guided Check Valves: Class 125, globe, metal seat.

3.6 HEATING-WATER VALVE SCHEDULE

- A. Pipe NPS 2 (DN 50) and Smaller:
 - 1. Bronze Angle Valves: Class 150, nonmetallic disc.
 - 2. Ball Valves: Two piece, full port, bronze with stainless-steel trim.
 - 3. Bronze Swing Check Valves: Class 150, nonmetallic disc.
 - 4. Bronze Globe Valves: Class 150, nonmetallic disc.
- B. Pipe NPS 2-1/2 (DN 65) and Larger:
 - 1. Iron, Single-Flange Butterfly Valves, NPS 2-1/2 to NPS 12 (DN 65 to DN 300): 200 CWP, EPDM seat, aluminum-bronze disc.
 - 2. Iron, Center-Guided Check Valves: Class 125, globe, metal seat.

END OF SECTION 230523

This Page Left Intentionally Blank

SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Fastener systems.
 - 5. Equipment supports.
- B. Related Sections:
 - 1. Section 230548 "Vibration Controls for HVAC Piping and Equipment" for vibration isolation devices.
 - 2. Section 233113 "Metal Ducts" and Section 233116 "Nonmetal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Pipe stands.
 - 4. Equipment supports.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel .
- B. Copper Pipe Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel .

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - a. <u>Cooper B-Line, Inc</u>.
 - b. <u>Flex-Strut Inc</u>.
 - c. <u>Unistrut Corporation</u>; Tyco International, Ltd.
 - 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 - 3. Standard: MFMA-4.
 - 4. Channels: Continuous slotted steel channel with inturned lips.
 - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel .
 - 7. Metallic Coating: Electroplated zinc indoors and Hot-dipped galvanized outdoors .

2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbonsteel shapes.

2.6 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches (100 mm) thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.

- 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- F. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- G. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- H. Install lateral bracing with pipe hangers and supports to prevent swaying.
- I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- J. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- L. Insulated Piping:
 - 1. Install MSS SP-58, Type 40, protective shields on piping. Shields shall span an arc of 180 degrees.
 - 2. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
 - b. NPS 4 (DN 100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.
 - c. NPS 5 and NPS 6 (DN 125 and DN 150): 18 inches (457 mm) long and 0.06 inch (1.52 mm) thick.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm).

3.5 PAINTING

- A. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 099113.1 "Exterior Painting for Mechanical and Electrical Systems"
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

- E. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.
- G. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 2. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 (DN 15 to DN 600) if little or no insulation is required.
 - 3. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- H. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24 (DN 24 to DN 600).
- I. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
- J. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- K. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- L. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 230529

SECTION 230548 - VIBRATION CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Isolation pads.
 - 2. Isolation mounts.
 - 3. Restrainedspring isolators.
 - 4. Elastomeric hangers.
 - 5. Spring hangers.

1.3 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. <u>Amber/Booth Company, Inc</u>.
 - 2. <u>Kinetics Noise Control</u>.
 - 3. <u>Mason Industries</u>.

- B. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
 - 1. Resilient Material: Oil- and water-resistant neoprene.
- C. Mounts: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.
 - 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - 2. Neoprene: Shock-absorbing materials compounded according to the standard for bridgebearing neoprene as defined by AASHTO.
- D. Spring Isolators: Freestanding, laterally stable, open-spring isolators.
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch- (6-mm-) thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig (3447 kPa).
 - 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
- E. Restrained Spring Isolators : Freestanding, steel, open-spring isolators with seismic or limitstop restraint.
 - 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch- (6-mm-) thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
 - 2. Restraint: Seismic or limit stop as required for equipment and authorities having jurisdiction.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- F. Elastomeric Hangers: Single or double-deflection type, fitted with molded, oil-resistant elastomeric isolator elements bonded to steel housings with threaded connections for hanger rods. Color-code or otherwise identify to indicate capacity range.

- G. Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 - 7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 VIBRATION-CONTROL DEVICE INSTALLATION

- A. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- B. Drilled-in Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole

and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.

- 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust active height of spring isolators.

END OF SECTION 230548

SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Pipe labels.
 - 3. Valve tags.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- C. Valve numbering scheme.
- D. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:

- 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch (3.2 mm) thick, and having predrilled holes for attachment hardware.
- 2. Letter Color: White.
- 3. Background Color: Black.
- 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
- 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
- 6. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- 7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

2.2 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches (38 mm) high.

2.3 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch (6.4-mm) letters for piping system abbreviation and 1/2-inch (13-mm) numbers.
 - 1. Tag Material: Brass, 0.032-inch (0.8-mm) minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link or beaded chain; or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch (A4) bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet (15 m) along each run. Reduce intervals to 25 feet (7.6 m) in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- B. Pipe Label Color Schedule:
 - 1. Chilled-Water Piping:
 - a. Background Color: Blue.
 - b. Letter Color: White.
 - 2. Heating Water Piping:
 - a. Background Color: Red.
 - b. Letter Color: White.
 - 3. Refrigerant Piping:
 - a. Background Color: White.
 - b. Letter Color: Black.
 - 4. Gas Piping:

- a. Background Color: Yellow.
- b. Letter Color: Black.

3.4 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Chilled Water: 1-1/2 inches (38 mm), round.
 - b. Hot Water: 1-1/2 inches (38 mm), round.
 - c. Gas: 1-1/2 inches (38 mm), round
 - 2. Valve-Tag Color:
 - a. Chilled Water: Natural.
 - b. Hot Water: Natural.
 - c. Gas: Natural.

END OF SECTION 230553

SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.
 - b. Variable-air-volume systems.
 - 2. Balancing Hydronic Piping Systems:
 - a. Primary-secondary hydronic systems.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 45 days of Contractor's Notice to Proceed, submit the Contract Documents review report as specified in Part 3.
- C. Strategies and Procedures Plan: Within 90 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures as specified in "Preparation" Article.

- D. Certified TAB reports.
- E. Sample report forms.
- F. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.
 - 3. Application.
 - 4. Dates of use.
 - 5. Dates of calibration.

1.5 QUALITY ASSURANCE

- A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC NEBB or TABB.
 - 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC NEBB or TABB.
 - 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC NEBB or TABB as a TAB technician.
- B. TAB Conference: Meet with Engineer, Owner, Construction Manager, and Commissioning Authority on approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Require the participation of the TAB field supervisor and technicians. Provide seven days' advance notice of scheduled meeting time and location.
 - 1. Agenda Items:
 - a. The Contract Documents examination report.
 - b. The TAB plan.
 - c. Coordination and cooperation of trades and subcontractors.
 - d. Coordination of documentation and communication flow.
- C. Certify TAB field data reports and perform the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
- D. TAB Report Forms: Use standard TAB contractor's forms approved by Engineer .
- E. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."
- F. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
- G. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 "System Balancing."

1.6 PROJECT CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.7 COORDINATION

- A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.
- B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
- B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
- F. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- G. Examine test reports specified in individual system and equipment Sections.
- H. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

- I. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
- J. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.
- K. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- L. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- M. Examine system pumps to ensure absence of entrained air in the suction piping.
- N. Examine operating safety interlocks and controls on HVAC equipment.
- O. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:
 - 1. Permanent electrical-power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in ASHRAE 111 SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.
 - 1. Comply with requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, install test ports and duct access doors that comply with requirements in Division 23 Section "Air Duct Accessories."
- 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Division 23 Section "HVAC Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Division 23 Section "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 - 2. Measure fan static pressures as follows to determine actual static pressure:

- a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
- b. Measure static pressure directly at the fan outlet or through the flexible connection.
- c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
- d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
- 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Report the cleanliness status of filters and the time static pressures are measured.
- 4. Measure static pressures entering and leaving other devices, such as sound traps, heatrecovery equipment, and air washers, under final balanced conditions.
- 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
- 6. Obtain approval from Engineer for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Division 23 Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure airflow of submain and branch ducts.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.

- 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
- 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

- A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a minimum set-point airflow with the remainder at maximum-airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.
- B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Set outdoor-air dampers at minimum, and set return- and exhaust-air dampers at a position that simulates full-cooling load.
 - 2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
 - 3. Measure total system airflow. Adjust to within indicated airflow.
 - 4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
 - 5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
 - a. If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.
 - 6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 - a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.
 - 7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.
 - a. Simulate maximum filter loading. The intent is for the variable frequency drive to operate between 55-60 Hz at maximum filter loading. Remeasure the static pressure at the most critical terminal unit and adjust the static pressure controller to ensure that adequate static pressure is maintained at the most critical unit. Report the minimum static pressure value and speed of variable frequency drives.

8. Record final fan-performance data.

3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

- A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.
- B. Prepare schematic diagrams of systems' "as-built" piping layouts.
- C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 - 1. Open all manual valves for maximum flow.
 - 2. Check liquid level in expansion tank.
 - 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
 - 4. Check flow-control valves for specified sequence of operation, and set at indicated flow.
 - 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 - 6. Set system controls so automatic valves are wide open to heat exchangers.
 - 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 - 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.8 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

- A. Measure water flow at pumps. Use the following procedures except for positive-displacement pumps:
 - 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 - a. If impeller sizes must be adjusted to achieve pump performance, obtain approval from Engineer and comply with requirements in Division 23 Section "Hydronic Pumps."
 - 2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved
 - a. Monitor motor performance during procedures and do not operate motors in overload conditions.
 - 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake

horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.

- 4. Report flow rates that are not within plus or minus 10 percent of design.
- B. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.
- C. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.
- D. Set calibrated balancing valves, if installed, at calculated presettings.
- E. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 - 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.
- F. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.
- G. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 - 1. Determine the balancing station with the highest percentage over indicated flow.
 - 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 - 3. Record settings and mark balancing devices.
- H. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.
- I. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing.
- J. Check settings and operation of each safety valve. Record settings.

3.9 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

- A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.
- B. Adjust discharge valve from the open position only if required to avoid motor overload, otherwise valve shall remain open and variable frequency controller shall control pump discharge pressure.
- C. Compensating for diversity. When the total flow rate of all valves is more than the indicated flow of the pump(s), close a selected number of valves with the remainder at design flow (100% control point, not necessarily 100% open) condition until the total flow rate equals the indicated flow of the pump(s). Select the closed valves so they are distributed evenly among the branch pipes.

- D. Systems with pressure independent control valves:
 - 1. Reduce system static pressure until measured flow at pump measurably drops. Record static pressure at hydraulically most demanding coil at this point and provide to Building Automation contractor for minimum control setpoint for static pressure control of the pumping system.

3.10 PROCEDURES FOR PRIMARY-SECONDARY HYDRONIC SYSTEMS

A. Balance the primary circuit flow first and then balance the secondary circuits.

3.11 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.12 PROCEDURES FOR CHILLERS

- A. Balance water flow through each evaporator and condenser to within specified tolerances of indicated flow with all pumps operating.
- B. Measure and record the following data with each chiller operating at design conditions:
 - 1. Evaporator-water entering and leaving temperatures, pressure drop, and water flow.
 - 2. Evaporator and condenser refrigerant temperatures and pressures, using instruments furnished by chiller manufacturer.
 - 3. Power factor if factory-installed instrumentation is furnished for measuring kilowatts.
 - 4. Kilowatt input if factory-installed instrumentation is furnished for measuring kilowatts.
 - 5. Capacity: Calculate in tons of cooling.
 - 6. For air-cooled chillers, verify condenser-fan rotation and record fan and motor data including number of fans and entering- and leaving-air temperatures.

3.13 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.

- B. Measure entering- and leaving-air temperatures.
- C. Record compressor data.

3.14 PROCEDURES FOR BOILERS

A. Hydronic Boilers: Measure and record entering- and leaving-water temperatures and water flow.

3.15 PROCEDURES FOR HEAT-TRANSFER COILS

- A. Measure, adjust, and record the following data for each water coil:
 - 1. Entering- and leaving-water temperature.
 - 2. Water flow rate.
 - 3. Water pressure drop.
 - 4. Dry-bulb temperature of entering and leaving air.
 - 5. Wet-bulb temperature of entering and leaving air for cooling coils.
 - 6. Airflow.
 - 7. Air pressure drop.
 - 8. Coils with pressure independent control valves: Measure coil airflow rate, entering and leaving air temperatures and calculate energy transfer. Measure coil entering and leaving water temperatures and use energy balance calculation to determine actual flow rate and record.
- B. Measure, adjust, and record the following data for each refrigerant coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Wet-bulb temperature of entering and leaving air.
 - 3. Airflow.
 - 4. Air pressure drop.
 - 5. Refrigerant suction pressure and temperature.

3.16 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

- A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
 - 1. Check the condition of coils.
 - 2. Report deficiencies.
- B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:
 - 1. Strainers are clean.
 - 2. Deficiencies noted in the preconstruction report are corrected.
- C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.

1. If calculations increase or decrease the water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.

3.17 TOLERANCES

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.
 - 3. Heating-Water Flow Rate: Plus or minus 10 percent.
 - 4. Cooling-Water Flow Rate: Plus or minus 10 percent.

3.18 REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: Prepare weekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.19 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB contractor.

- 3. Project name.
- 4. Project location.
- 5. Architect's name and address.
- 6. Engineer's name and address.
- 7. Contractor's name and address.
- 8. Report date.
- 9. Signature of TAB supervisor who certifies the report.
- 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
- 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
- 12. Nomenclature sheets for each item of equipment.
- 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
- 14. Notes to explain why certain final data in the body of reports vary from indicated values.
- 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Settings for supply-air, static-pressure controller.
 - g. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Water flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.
- E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.

- h. Sheave make, size in inches (mm), and bore.
- i. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
- j. Number, make, and size of belts.
- k. Number, type, and size of filters.
- 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches (mm), and bore.
 - f. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
- 3. Test Data (Indicated and Actual Values):
 - a. Total air flow rate in cfm (L/s).
 - b. Total system static pressure in inches wg (Pa).
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg (Pa).
 - e. Filter static-pressure differential in inches wg (Pa).
 - f. Preheat-coil static-pressure differential in inches wg (Pa).
 - g. Cooling-coil static-pressure differential in inches wg (Pa).
 - h. Heating-coil static-pressure differential in inches wg (Pa).
 - i. Outdoor airflow in cfm (L/s).
 - j. Return airflow in cfm (L/s).
 - k. Outdoor-air damper position.
 - 1. Return-air damper position.
- F. Apparatus-Coil Test Reports:
 - 1. Coil Data:
 - a. System identification.
 - b. Location.
 - c. Coil type.
 - d. Number of rows.
 - e. Fin spacing in fins per inch (mm) o.c.
 - f. Make and model number.
 - g. Face area in sq. ft. (sq. m).
 - h. Tube size in NPS (DN).
 - i. Tube and fin materials.
 - j. Circuiting arrangement.
 - 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm (L/s).
 - b. Average face velocity in fpm (m/s).
 - c. Air pressure drop in inches wg (Pa).
 - d. Outdoor-air, wet- and dry-bulb temperatures in deg F (deg C).
 - e. Return-air, wet- and dry-bulb temperatures in deg F (deg C).

- f. Entering-air, wet- and dry-bulb temperatures in deg F (deg C).
- g. Leaving-air, wet- and dry-bulb temperatures in deg F (deg C).
- h. Water flow rate in gpm (L/s).
- i. Water pressure differential in feet of head or psig (kPa).
- j. Entering-water temperature in deg F (deg C).
- k. Leaving-water temperature in deg F (deg C).
- G. Gas--Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Fuel type in input data.
 - g. Output capacity in **Btu/h** (kW).
 - h. Ignition type.
 - i. Burner-control types.
 - j. Motor horsepower and rpm.
 - k. Motor volts, phase, and hertz.
 - 1. Motor full-load amperage and service factor.
 - 2. Test Data (Indicated and Actual Values):
 - a. Low-fire fuel input in Btu/h (kW).
 - b. High-fire fuel input in Btu/h (kW).
 - c. Manifold pressure in psig (kPa).
 - d. High-temperature-limit setting in deg F (deg C).
 - e. Operating set point in Btu/h (kW).
 - f. Motor voltage at each connection.
 - g. Motor amperage for each phase.
 - h. Heating value of fuel in Btu/h (kW).
- H. Fan Test Reports: For supply and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches (mm), and bore.
 - h. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
 - 2. Motor Data:

- a. Motor make, and frame type and size.
- b. Horsepower and rpm.
- c. Volts, phase, and hertz.
- d. Full-load amperage and service factor.
- e. Sheave make, size in inches (mm), and bore.
- f. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
- g. Number, make, and size of belts.
- 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm (L/s).
 - b. Total system static pressure in inches wg (Pa).
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg (Pa).
 - e. Suction static pressure in inches wg (Pa).
- I. Round and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in $\deg F (\deg C)$.
 - d. Duct static pressure in inches wg (Pa).
 - e. Duct size in inches (mm).
 - f. Duct area in sq. ft. (sq. m).
 - g. Indicated air flow rate in cfm (L/s).
 - h. Indicated velocity in fpm (m/s).
 - i. Actual air flow rate in cfm (L/s).
 - j. Actual average velocity in fpm (m/s).
 - k. Barometric pressure in psig (Pa).
- J. Air-Terminal-Device Reports:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Apparatus used for test.
 - d. Area served.
 - e. Make.
 - f. Number from system diagram.
 - g. Type and model number.
 - h. Size.
 - i. Effective area in sq. ft. (sq. m).
 - 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm (L/s).
 - b. Air velocity in fpm (m/s).

- c. Preliminary air flow rate as needed in cfm (L/s).
- d. Preliminary velocity as needed in fpm (m/s).
- e. Final air flow rate in cfm (L/s).
- f. Final velocity in fpm (m/s).
- g. Space temperature in deg F (deg C).
- K. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:
 - 1. Unit Data:
 - a. System and air-handling-unit identification.
 - b. Location and zone.
 - c. Room or riser served.
 - d. Coil make and size.
 - e. Flowmeter type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm (L/s).
 - b. Entering-water temperature in deg F (deg C).
 - c. Leaving-water temperature in deg F (deg C).
 - d. Water pressure drop in feet of head or psig (kPa).
 - e. Entering-air temperature in deg F (deg C).
 - f. Leaving-air temperature in deg F (deg C).
- L. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Service.
 - d. Make and size.
 - e. Model number and serial number.
 - f. Water flow rate in gpm (L/s).
 - g. Water pressure differential in feet of head or psig (kPa).
 - h. Required net positive suction head in feet of head or psig (kPa).
 - i. Pump rpm.
 - j. Impeller diameter in inches (mm).
 - k. Motor make and frame size.
 - l. Motor horsepower and rpm.
 - m. Voltage at each connection.
 - n. Amperage for each phase.
 - o. Full-load amperage and service factor.
 - p. Seal type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Static head in feet of head or psig (kPa).
 - b. Pump shutoff pressure in feet of head or psig (kPa).

- c. Actual impeller size in inches (mm).
- d. Full-open flow rate in gpm (L/s).
- e. Full-open pressure in feet of head or psig (kPa).
- f. Final discharge pressure in feet of head or psig (kPa).
- g. Final suction pressure in feet of head or psig (kPa).
- h. Final total pressure in feet of head or psig (kPa).
- i. Final water flow rate in gpm(L/s).
- j. Voltage at each connection.
- k. Amperage for each phase.
- M. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.20 INSPECTIONS

- A. Initial Inspection:
 - 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.
 - 2. Check the following for each system:
 - a. Measure airflow of at least 10 percent of air outlets.
 - b. Measure water flow of at least 5 percent of terminals.
 - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 - d. Verify that balancing devices are marked with final balance position.
 - e. Note deviations from the Contract Documents in the final report.
- B. Final Inspection:
 - 1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Commissioning Authority.
 - 2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of Commissioning Authority.
 - 3. Commissioning Authority shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
 - 4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

- 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:
 - 1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 - 2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.
- D. Prepare test and inspection reports.

3.21 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593

This Page Left Intentionally Blank

SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.

B. Related Sections:

- 1. Section 230716 "HVAC Equipment Insulation."
- 2. Section 230719 "HVAC Piping Insulation."

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 - 3. Detail application of field-applied jackets.
 - 4. Detail application at linkages of control devices.

1.4 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket . Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :

- a. <u>CertainTeed Corp.; SoftTouch Duct Wrap</u>.
- b. Johns Manville; Microlite.
- c. <u>Knauf Insulation; Friendly Feel Duct Wrap</u>.
- d. Owens Corning; SOFTR All-Service Duct Wrap.
- F. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>CertainTeed Corp.; Commercial Board</u>.
 - b. Johns Manville; 800 Series Spin-Glas.
 - c. <u>Knauf Insulation; Insulation Board</u>.
 - d. <u>Owens Corning; Fiberglas 700 Series</u>.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-127.</u>
 - b. <u>Eagle Bridges Marathon Industries</u>; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. <u>Mon-Eco Industries, Inc.; 22-25</u>.
 - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-82</u>.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
 - b. <u>Vimasco Corporation; 749.</u>
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.

2.4 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> Company; CP-76.Eagle Bridges - Marathon Industries; 405.
 - b. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 - c. <u>Mon-Eco Industries, Inc.; 44-05</u>.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: Aluminum.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

- 2.6 TAPES
 - A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>ABI, Ideal Tape Division</u>; 491 AWF FSK.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - c. <u>Compac Corporation</u>; 110 and 111.
 - d. <u>Venture Tape</u>; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 6.5 mils (0.16 mm).
 - 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.7 SECUREMENTS

- A. Insulation Pins and Hangers:
 - 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 - 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch (38-mm) galvanized carbon-steel washer.
 - 3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 - a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

- 1. Verify that systems to be insulated have been tested and are free of defects.
- 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- L. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

- A. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- B. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).
- C. Insulation Installation at Floor Penetrations:
 - 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches (50 mm).
 - 2. Seal penetrations through fire-rated assemblies.

3.5 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.
 - 2. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitordischarge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 - b. On duct sides with dimensions larger than 18 inches (450 mm), place pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 3. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

- a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
- b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches (75 mm).
- 4. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 5. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.
 - 2. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitordischarge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 - b. On duct sides with dimensions larger than 18 inches (450 mm), space pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 3. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches (75 mm).

- 4. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 5. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

3.6 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.
- B. Items Not Insulated:
 - 1. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 2. Factory-insulated flexible ducts.
 - 3. Factory-insulated plenums and casings.
 - 4. Flexible connectors.
 - 5. Vibration-control devices.
 - 6. Factory-insulated access panels and doors.

3.7 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, round and flat-oval, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 1.5-lb/cu. ft. (24-kg/cu. m) nominal density.
- B. Concealed, round and flat-oval, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 1.5-lb/cu. ft. (24-kg/cu. m) nominal density.
- C. Concealed, rectangular, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 1.5-lb/cu. ft. (24-kg/cu. m) nominal density.
- D. Concealed, rectangular, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 1.5-lb/cu. ft. (24-kg/cu. m) nominal density.
- E. Concealed, rectangular, outdoor-air duct insulation shall be the following:

DUCT INSULATION

- 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 1.5-lb/cu. ft. (24-kg/cu. m) nominal density.
- F. Concealed, return-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches (50 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.
- G. Concealed, outdoor-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches (50 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.
- H. Concealed, exhaust-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches (50 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.
- I. Exposed, rectangular, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches (50 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.
- J. Exposed, rectangular, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches (50 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.
- K. Exposed, rectangular, outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches (50 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.
- L. Exposed, supply-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches (50 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.
- M. Exposed, return-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches (50 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.
- N. Exposed, outdoor-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches (50 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.
- O. Exposed, exhaust-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches (50 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.

END OF SECTION 230713

This Page Left Intentionally Blank

SECTION 230716 - HVAC EQUIPMENT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following HVAC equipment that is not factory insulated:
 - 1. Chilled-water pumps.
 - 2. Heating, hot-water pumps.
 - 3. Expansion/compression tanks.
 - 4. Air separators.
- B. Related Sections:
 - 1. Section 230713 "Duct Insulation."
 - 2. Section 230719 "HVAC Piping Insulation."

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail removable insulation at equipment connections.
 - 3. Detail application of field-applied jackets.
 - 4. Detail field application for each equipment type.

1.4 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with equipment Installer for equipment insulation application.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Breeching Insulation Schedule" and "Equipment Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

- 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Pittsburgh Corning Corporation; Foamglas</u>.
- 2. Block Insulation: ASTM C 552, Type I.
- 3. Special-Shaped Insulation: ASTM C 552, Type III.
- 4. Board Insulation: ASTM C 552, Type IV.
- 5. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>Aeroflex USA, Inc.; Aerocel.</u>
 - b. <u>Armacell LLC; AP Armaflex</u>.
 - c. <u>K-Flex USA; Insul-Sheet and K-FLEX LS</u>.
- H. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. (40 kg/cu. m) or more. Thermal conductivity (k-value) at 100 deg F (55 deg C) is 0.29 Btu x in./h x sq. ft. x deg F (0.042 W/m x K) or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>CertainTeed Corp.; CrimpWrap.</u>
 - b. Johns Manville; MicroFlex.
 - c. Knauf Insulation; Pipe and Tank Insulation.
 - d. <u>Owens Corning; Fiberglas Pipe and Tank Insulation</u>.
- I. Phenolic:
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>Kingspan Tarec Industrial Insulation NV; Koolphen K</u>.
 - b. <u>Resolco International BV; Insul-phen</u>.
 - 2. Block insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type II, Grade 1.
 - 3. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
 - 4. Factory-Applied Jacket: ASJ. Requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

A. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.

- 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote</u>.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F (minus 73 to plus 93 deg C).
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 81-84.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Phenolic Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F (minus 59 to plus 149 deg C).
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-96.
 - b. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 81-33.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Aeroflex USA, Inc</u>.; Aeroseal.
 - b. <u>Armacell LLC</u>; Armaflex 520 Adhesive.
 - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75.
 - d. <u>K-Flex USA</u>; R-373 Contact Adhesive.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

- E. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
 - b. <u>Eagle Bridges</u> Marathon Industries; 225.
 - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- F. ASJ Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. <u>Eagle Bridges</u> Marathon Industries; 225.
 - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H .B. Fuller Company; 30-80/30-90.
 - b. <u>Vimasco Corporation</u>; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.

- 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
- 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
- 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel.
 - b. <u>Eagle Bridges</u> Marathon Industries; 570.
 - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.033 metric perm) at 30-mil (0.8-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F (Minus 46 to plus 104 deg C).
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.
- D. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-10.
 - b. <u>Eagle Bridges</u> Marathon Industries; 550.
 - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.
 - d. <u>Mon-Eco Industries, Inc</u>.; 55-50.
 - e. <u>Vimasco Corporation</u>; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms (1.2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: 60 percent by volume and 66 percent by weight.
 - 5. Color: White.

2.5 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

- a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-50 AHV2.
- b. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-36.
- c. <u>Vimasco Corporation</u>; 713 and 714.
- 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over equipment insulation.
- 4. Service Temperature Range: 0 to plus 180 deg F (Minus 18 to plus 82 deg C).
- 5. Color: White.

2.6 SEALANTS

- A. Joint Sealants:
 - 1. Joint Sealants for Cellular-Glass and Phenolic Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - b. <u>Eagle Bridges</u> Marathon Industries; 405.
 - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-45.
 - d. <u>Mon-Eco Industries, Inc</u>.; 44-05.
 - e. <u>Pittsburgh Corning Corporation</u>; Pittseal 444.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Permanently flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
 - 5. Color: White or gray.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Metal Jacket Flashing Sealants:
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - b. <u>Eagle Bridges</u> Marathon Industries; 405.
 - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 - d. <u>Mon-Eco Industries, Inc</u>.; 44-05.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: Aluminum.

- 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. ASJ Flashing Sealants and PVC Jacket Flashing Sealants:
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: White.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. Metal Jacket:
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Metal Jacketing Systems.
 - b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 - c. <u>RPR Products, Inc</u>.; Insul-Mate.
 - 2. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing .
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 2.5-mil- (0.063-mm-) thick polysurlyn.
 - d. Moisture Barrier for Outdoor Applications: 2.5-mil- (0.063-mm-) thick polysurlyn.
- e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed two-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.9 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Width: 3 inches (75 mm).
 - 2. Thickness: 11.5 mils (0.29 mm).
 - 3. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.10 SECUREMENTS

- A. Bands:
 - 1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 ; 0.015 inch (0.38 mm) thick, 1/2 inch (13 mm) wide with wing seal .
 - 2. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 1/2 inch (13 mm) wide with wing seal .
 - 3. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:
 - 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.
 - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - 1) <u>AGM Industries, Inc.</u>; Tactoo Perforated Base Insul-Hangers.
 - 2) <u>GEMCO</u>; Perforated Base.
 - 3) <u>Midwest Fasteners, Inc</u>.; Spindle.

- b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
- c. Spindle: Copper- or zinc-coated, low-carbon steel , fully annealed, 0.106-inch-(2.6-mm-) diameter shank, length to suit depth of insulation indicated.
- d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - 1) <u>AGM Industries, Inc</u>.; RC-150.
 - 2) <u>GEMCO</u>; R-150.
 - 3) <u>Midwest Fasteners, Inc</u>.; WA-150.
 - 4) <u>Nelson Stud Welding</u>; Speed Clips.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.
- D. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel .

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. On below ambient systems provide continuous vapor barrier.
- B. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment.
- C. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment as specified in insulation system schedules.
- D. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- E. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- F. Install multiple layers of insulation with longitudinal and end seams staggered.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints.

- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- O. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 INSTALLATION OF EQUIPMENT, TANK, AND VESSEL INSULATION

- A. Mineral-Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of tank and vessel surfaces.
 - 2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
 - 3. Install adhesively attached insulation hangers and speed washers on sides of tanks and vessels as follows:
 - a. Do not weld anchor pins to ASME-labeled pressure vessels.
 - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 - c. On tanks and vessels, maximum anchor-pin spacing is 3 inches (75 mm) from insulation end joints, and 16 inches (400 mm) o.c. in both directions.
 - d. Do not overcompress insulation during installation.
 - e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 - f. Impale insulation over anchor pins and attach speed washers.
 - g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
 - 5. Stagger joints between insulation layers at least 3 inches (75 mm).
 - 6. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
 - 7. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.

- B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.
 - 1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
 - 2. Seal longitudinal seams and end joints.
- C. Insulation Installation on Pumps:
 - 1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch (150-mm) centers, starting at corners. Install 3/8-inch- (10-mm-) diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
 - 2. Fabricate boxes from galvanized steel, at least 0.040 inch (1.0 mm) thick.
 - 3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.5 INSTALLATION OF PHENOLIC INSULATION

- A. Secure single-layer insulation with stainless-steel bands at 12-inch (300-mm) intervals and tighten bands without deforming insulation materials.
- B. Install two-layer insulation with joints tightly butted and staggered at least 3 inches (75 mm). Secure inner layer with 0.062-inch (1.6-mm) wire spaced at 12-inch (300-mm) intervals. Secure outer layer with stainless-steel bands at 12-inch (300-mm) intervals.

3.6 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch (50-mm) overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch- (1.6-mm-) thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.7 FINISHES

- A. Equipment Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below.
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

- a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.8 EQUIPMENT INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.
- B. Insulate indoor and outdoor equipment that is not factory insulated.
- C. Chilled-water pump insulation shall be one of the following:
 - 1. Cellular Glass: 3 inches (75 mm) thick.
 - 2. Phenolic: 2 inches (50 mm) thick.
- D. Heating-hot-water pump insulation shall be one of the following:
 - 1. Cellular Glass: 2 inches (50 mm) thick.
 - 2. Phenolic: 1 inches (25 mm) thick.
- E. Chilled-water expansion/compression tank insulation shall be the following:
 - 1. Flexible Elastomeric: 1-1/2 inches (38 mm) thick.
- F. Heating-hot-water expansion/compression tank insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches (50 mm) thick.
- G. Chilled-water air-separator insulation shall be the following:
 - 1. Flexible Elastomeric: 2 inches (50 mm) thick.
- H. Heating-hot-water air-separator insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches (50 mm) thick.

3.9 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.

- C. Equipment, Concealed:
 - 1. None.
- D. Equipment, Exposed, up to 48 Inches (1200 mm) in Diameter or with Flat Surfaces up to 72 Inches (1800 mm):
 - 1. Aluminum, Corrugated: 0.024 inch (0.61 mm) thick.
- E. Equipment, Exposed, Larger Than 48 Inches (1200 mm) in Diameter or with Flat Surfaces Larger Than 72 Inches (1800 mm):
 - 1. Aluminum, Stucco Embossed with 1-1/4-Inch- (32-mm-) Deep Corrugations: 0.032 inch (0.81 mm) thick.

3.10 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Equipment, Concealed:
 - 1. Aluminum, Corrugated: 0.024 inch (0.61 mm) thick.
- D. Equipment, Exposed, up to 48 Inches (1200 mm) in Diameter or with Flat Surfaces up to 72 Inches (1800 mm):
 - 1. Aluminum, Corrugated: 0.024 inch (0.61 mm) thick.
- E. Equipment, Exposed, Larger Than 48 Inches (1200 mm) in Diameter or with Flat Surfaces Larger Than 72 Inches (1800 mm):
 - 1. Aluminum, Stucco Embossed with 1-1/4-Inch- (32-mm-) Deep Corrugations: 0.032 inch (0.81 mm) thick.

END OF SECTION 230716

This Page Left Intentionally Blank

SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following HVAC piping systems:
 - 1. Condensate drain piping, indoors and outdoors.
 - 2. Chilled-water and brine piping, indoors and outdoors.
 - 3. Heating hot-water piping, indoors and outdoors.
 - 4. Refrigerant suction and hot-gas piping, indoors and outdoors.
- B. Related Sections:
 - 1. Section 230713 "Duct Insulation."
 - 2. Section 230716 "HVAC Equipment Insulation."
 - 3. Section 232113.13 "Underground Hydronic Piping" for pre-insulated underground piping outside the building.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 3. Detail removable insulation at piping specialties.
 - 4. Detail application of field-applied jackets.
 - 5. Detail application at linkages of control devices.

1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive,

mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

- 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
- 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Pittsburgh Corning Corporation; Foamglas</u>.
 - 2. Block Insulation: ASTM C 552, Type I.
 - 3. Special-Shaped Insulation: ASTM C 552, Type III.
 - 4. Board Insulation: ASTM C 552, Type IV.
 - 5. Preformed Pipe Insulation with Factory-Applied ASJ-SSL: Comply with ASTM C 552, Type II, Class 2.
 - 6. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>Aeroflex USA, Inc.; Aerocel</u>.
 - b. <u>Armacell LLC; AP Armaflex</u>.
 - c. <u>K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.</u>
- H. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. Johns Manville; Micro-Lok.
 - b. <u>Knauf Insulation; 1000-Degree Pipe Insulation</u>.
 - c. Owens Corning; Fiberglas Pipe Insulation.
 - 2. Type I, 850 deg F (454 deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- I. Phenolic:
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>Kingspan Tarec Industrial Insulation NV; Koolphen K</u>.
 - b. <u>Resolco International BV; Insul-phen</u>.
 - 2. Preformed pipe insulation of rigid, expanded, closed-cell structure with factory applied ASJ-SSL. Comply with ASTM C 1126, Type III, Grade 1.

- 3. Block insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type II, Grade 1.
- 4. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- 5. Nominal Density: 3.75 pcf per ASTM 1622.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.</u>

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F (minus 73 to plus 93 deg C).
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 81-84.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Phenolic Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F (minus 59 to plus 149 deg C).
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-96.
 - b. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 81-33.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

- a. <u>Aeroflex USA, Inc</u>.; Aeroseal.
- b. <u>Armacell LLC</u>; Armaflex 520 Adhesive.
- c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75.
- d. <u>K-Flex USA</u>; R-373 Contact Adhesive.
- 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
 - b. <u>Eagle Bridges</u> Marathon Industries; 225.
 - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. <u>Mon-Eco Industries, Inc</u>.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- F. ASJ Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. <u>Eagle Bridges</u> Marathon Industries; 225.
 - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
 - d. <u>Mon-Eco Industries, Inc</u>.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.

- 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
 - b. <u>Vimasco Corporation</u>; 749.
- 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
- 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
- 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel.
 - b. <u>Eagle Bridges</u> Marathon Industries; 570.
 - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.033 metric perm) at 30-mil (0.8-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F (Minus 46 to plus 104 deg C).
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.
- D. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-10.
 - b. <u>Eagle Bridges</u> Marathon Industries; 550.
 - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.
 - d. <u>Mon-Eco Industries, Inc</u>.; 55-50.
 - e. <u>Vimasco Corporation</u>; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms (1.2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: 60 percent by volume and 66 percent by weight.
 - 5. Color: White.

2.5 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-50 AHV2.
 - b. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-36.
 - c. <u>Vimasco Corporation</u>; 713 and 714.
 - 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
 - 4. Service Temperature Range: 0 to plus 180 deg F (Minus 18 to plus 82 deg C).
 - 5. Color: White.

2.6 SEALANTS

- A. Joint Sealants:
 - 1. Joint Sealants for Cellular-Glass and Phenolic Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - b. <u>Eagle Bridges</u> Marathon Industries; 405.
 - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-45.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. <u>Pittsburgh Corning Corporation</u>; Pittseal 444.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Permanently flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
 - 5. Color: White or gray.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Metal Jacket Flashing Sealants:
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

- a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
- b. <u>Eagle Bridges</u> Marathon Industries; 405.
- c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
- d. <u>Mon-Eco Industries, Inc</u>.; 44-05.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
- 5. Color: Aluminum.
- 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. ASJ Flashing Sealants:
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: White.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. (68 g/sq. m) with a thread count of 10 strands by 10 strands/sq. in. (4 strands by 4 strands/sq. mm) for covering pipe and pipe fittings.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Chil-Glas Number 10.

2.9 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. Metal Jacket:
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Metal Jacketing Systems.
 - b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 - c. <u>RPR Products, Inc</u>.; Insul-Mate.
 - 2. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 2.5-mil- (0.063-mm-) thick polysurlyn.
 - d. Moisture Barrier for Outdoor Applications: 2.5-mil- (0.063-mm-) thick polysurlyn.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.10 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Width: 3 inches (75 mm).
 - 2. Thickness: 11.5 mils (0.29 mm).
 - 3. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.11 SECUREMENTS

- A. Bands:
 - 1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 ; 0.015 inch (0.38 mm) thick, 1/2 inch (13 mm) wide with wing seal .
 - 2. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 1/2 inch (13 mm) wide with wing seal .
- B. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. On below ambient systems provide continuous vapor barrier.
- B. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- C. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- D. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- E. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- F. Install multiple layers of insulation with longitudinal and end seams staggered.
- G. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- H. Keep insulation materials dry during application and finishing.
- I. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- J. Install insulation with least number of joints practical.
- K. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

- 1. Install insulation continuously through hangers and around anchor attachments.
- 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
- L. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- M. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 3. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- N. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 - 4. Seal jacket to wall flashing with flashing sealant.
- B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

- C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
- D. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. "

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - 8. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install field fabricated removable insulation covers at unions, control valves, valves and other locations indicated for below ambient systems. Installation shall maintain continuous vapor barrier and conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF CELLULAR-GLASS INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Create a water stop between insulation and pipe by brushing vapor barrier mastic on pipe around circumference of pipe every 3 feet.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
- 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.
- 3. Install field applied glass cloth jacket; where metal jacket is specified install over glass cloth jacket.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of cellular-glass insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
- B. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
 - 3. Install field applied glass cloth jacket; where metal jacket is specified install over glass cloth jacket.
- C. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.9 INSTALLATION OF PHENOLIC INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Create a water stop between insulation and pipe by brushing vapor barrier mastic on pipe around circumference of pipe every 3 feet.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same material and thickness as pipe insulation.

- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.
 - 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.
 - 3. Install field applied glass cloth jacket; where metal jacket is specified install over glass cloth jacket.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.10 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch (50-mm) overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch- (1.6-mm-) thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
 - 4. Finish to achieve smooth, uniform finish.
- B. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.11 FINISHES

- A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- B. Color: White. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless-steel jackets.

3.12 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

3.13 INDOOR PIPING INSULATION SCHEDULE

- A. Condensate and Equipment Drain Water below 60 Deg F (16 Deg C):
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 3/4 inch (19 mm) thick.
- B. Chilled Water and Brine, above 40 Deg F (5 Deg C):
 - 1. NPS 12 (DN 300) and Smaller: Insulation shall be one of the following:
 - a. Cellular Glass: 2 inches (50 mm) thick.
 - b. Phenolic: 1-1/2 inches (38 mm) thick.
- C. Heating-Hot-Water Supply and Return, 200 Deg F (93 Deg C) and Below:
 - 1. NPS 12 (DN 300) and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I: 2 inches (50 mm) thick.
- D. Refrigerant Suction and Hot-Gas Piping:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inch (25 mm) thick.
- E. Refrigerant Suction and Hot-Gas Flexible Tubing:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inch (25 mm) thick.

3.14 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

- A. Chilled Water and Brine:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Cellular Glass: 2 inches (50 mm) thick.
 - b. Phenolic: $1 \frac{1}{2}$ inches (38 mm) thick.
- B. Heating-Hot-Water Supply and Return, 200 Deg F (93 Deg C) and Below:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Cellular Glass: 2 inches (50 mm) thick.
 - b. Phenolic: 1 1/2 inches (38 mm) thick.
- C. Refrigerant Suction and Hot-Gas Piping:

- 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inches (25 mm) thick.
- D. Refrigerant Suction and Hot-Gas Flexible Tubing:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inches (25 mm) thick.

3.15 OUTDOOR, UNDERGROUND PIPING INSULATION SCHEDULE

A. Belowground pre-insulated piping is specified in Section 232113.13 "Underground Hydronic Piping."

3.16 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. None.

D. Piping, Exposed:

1. Aluminum, Corrugated: 0.016 inch (0.41 mm) thick.

3.17 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. Aluminum, Corrugated: 0.024 inch (0.61 mm) thick.
- D. Piping, Exposed:
 - 1. Aluminum, Corrugated: 0.024 inch (0.61 mm) thick.

END OF SECTION 230719

SECTION 230800 - COMMISSIONING OF HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes commissioning process requirements for HVAC&R systems, assemblies, and equipment.
- B. Related Sections:
 - 1. Section 019113 "General Commissioning Requirements" for general commissioning process requirements.

1.3 DEFINITIONS

- A. Commissioning Plan: A document that outlines the organization, schedule, allocation of resources, and documentation requirements of the commissioning process.
- B. CxA: Commissioning Authority.
- C. FPT: Functional Performance Test. Test of dynamic function and operation of equipment and systems. Systems are tested under various modes, such as during low cooling or heating loads, high loads, component failures, unoccupied, varying outside air temperatures, life safety conditions, power failure, etc. Systems are run through all specified sequences of operation.
- D. HVAC&R: Heating, Ventilating, Air Conditioning, and Refrigeration.
- E. SVC: System Verification Checklist. A list of static inspections and elementary component tests that verify proper installation of equipment (e.g., belt tension, oil levels, labels affixed, gauges in place, sensors calibrated, etc.).
- F. Systems, Subsystems, Equipment, and Components: Where these terms are used together or separately, they shall mean "as-built" systems, subsystems, equipment, and components.
- G. TAB: Testing, Adjusting, and Balancing.

1.4 INFORMATIONAL SUBMITTALS

A. Certificate of proper controls hardware specification to permit functional performance testing.

- B. Certificates of readiness.
- C. Certificates of completion of system verification checklists (SVC).
- D. Certificates of completion of controls point-to-point checkout.

1.5 HVAC CONTRACTOR'S RESPONSIBILITIES

- A. Ensure that all Division 23 sub-contractors execute their commissioning responsibilities according to the Contract Documents and schedule.
- B. Perform commissioning functional performance tests at the direction of the CxA.
- C. Attend construction phase controls coordination meeting.
- D. Attend testing, adjusting, and balancing review and coordination meeting.
- E. Participate in HVAC&R systems, assemblies, equipment, and component maintenance orientation and inspection as directed by the CxA.
- F. Provide information requested by the CxA for final commissioning documentation.
- G. Provide measuring instruments and logging devices to record test data, and provide data acquisition equipment to record data for the complete range of testing for the required test period.

1.6 TAB CONTRACTOR'S RESPONSIBILITIES

- A. Attend testing, adjusting, and balancing review and coordination meeting.
- B. Participate in verification of the TAB report by the CxA for verification and diagnostic purposes.

1.7 BUILDING AUTOMATION CONTRACTOR'S RESPONSIBILITIES

- A. Review design for controllability with respect to equipment selected for the project. Review and confirm in writing that a proper hardware specification exists to permit functional performance testing as required by specification and sequence of operation.
- B. Attend testing, adjusting, and balancing review and coordination meeting.
- C. Attend construction phase controls coordination meeting.
- D. Inspect, check, and confirm the correct installation and operation of input and output field points and devices through documented and signed off point-to-point checkouts.
- E. Provide support and coordination with TAB Contractor on all interfaces between controls and TAB scopes of work. Provide, at no additional cost to the TAB and commissioning agencies,

all devices, such as portable operator's terminals and all software for the TAB agency to use in completing TAB procedures.

F. Provide CxA with full access to Building Automation System (BAS) during commissioning process. Provide control technician responsible for system programming during construction, to assist the CxA for the duration of the commissioning process.

1.8 CxA'S RESPONSIBILITIES

- A. Provide Project-specific construction system verification checklists and commissioning process functional test procedures for actual HVAC&R systems, assemblies, equipment, and components to be furnished and installed as part of the construction contract.
- B. Direct commissioning testing.
- C. Verify testing, adjusting, and balancing of Work are complete.

1.9 COMMISSIONING DOCUMENTATION

- A. Provide the following information to the CxA for inclusion in the commissioning plan:
 - 1. Plan for delivery and review of submittals, systems manuals, and other documents and reports.
 - 2. Identification of installed systems, assemblies, equipment, and components including design changes that occurred during the construction phase.
 - 3. Process and schedule for completing construction checklists and manufacturer's prestart and startup checklists for HVAC&R systems, assemblies, equipment, and components to be verified and tested.
 - 4. Certificate of completion certifying that installation, system verifcation checks, and startup procedures have been completed.
 - 5. Certificate of readiness certifying that HVAC&R systems, subsystems, equipment, and associated controls are ready for testing.
 - 6. Test and inspection reports and certificates.
 - 7. Corrective action documents.
 - 8. Verification of testing, adjusting, and balancing reports.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TESTING PREPARATION

A. Certify that HVAC&R systems, subsystems, and equipment have been installed, calibrated, and started and are operating according to the Contract Documents.

- B. Certify that HVAC&R instrumentation and control systems have been completed and calibrated, that they are operating according to the Contract Documents, and that pretest set points have been recorded.
- C. Certify that testing, adjusting, and balancing procedures have been completed and that testing, adjusting, and balancing reports have been submitted, discrepancies corrected, and corrective work approved.
- D. Set systems, subsystems, and equipment into operating mode to be tested (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle, emergency power, and alarm conditions).
- E. Inspect and verify the position of each device and interlock identified on checklists.
- F. Check safety cutouts, alarms, and interlocks with smoke control and life-safety systems during each mode of operation.
- G. Testing Instrumentation: Install measuring instruments and logging devices to record test data as directed by the CxA.

3.2 TESTING AND BALANCING VERIFICATION

- A. Prior to performance of testing and balancing Work, provide copies of reports, sample forms, checklists, and certificates to the CxA.
- B. Notify the CxA at least 10 days in advance of testing and balancing Work, and provide access for the CxA to witness testing and balancing Work.
- C. Provide technicians, instrumentation, and tools to verify testing and balancing of HVAC&R systems at the direction of the CxA.
 - 1. The CxA will notify testing and balancing Contractor 10 days in advance of the date of field verification. Notice will not include data points to be verified.
 - 2. The testing and balancing Contractor shall use the same instruments (by model and serial number) that were used when original data were collected.
 - 3. Failure of an item includes, other than sound, a deviation of more than 10 percent. Failure of more than 10 percent of selected items shall result in rejection of final testing, adjusting, and balancing report. For sound pressure readings, a deviation of 3 dB shall result in rejection of final testing. Variations in background noise must be considered.
 - 4. Remedy the deficiency and notify the CxA so verification of failed portions can be performed.

3.3 GENERAL TESTING REQUIREMENTS

- A. Provide technicians, instrumentation, and tools to perform commissioning test at the direction of the CxA.
- B. Scope of HVAC&R testing shall include entire HVAC&R installation, from central equipment for heat generation and refrigeration through distribution systems to each conditioned space.

Testing shall include measuring capacities and effectiveness of operational and control functions.

- C. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of building automation system controllers and sensors.
- D. The CxA along with the HVAC&R Contractor, testing and balancing Contractor, and HVAC&R Instrumentation and Control Contractor shall prepare detailed testing plans, procedures, and checklists for HVAC&R systems, subsystems, and equipment.
- E. Tests will be performed using design conditions whenever possible.
- F. Simulated conditions may need to be imposed using an artificial load when it is not practical to test under design conditions. Before simulating conditions, calibrate testing instruments. Provide equipment to simulate loads. Set simulated conditions as directed by the CxA and document simulated conditions and methods of simulation. After tests, return settings to normal operating conditions.
- G. The CxA may direct that set points be altered when simulating conditions is not practical.
- H. The CxA may direct that sensor values be altered with a signal generator when design or simulating conditions and altering set points are not practical.
- I. Short-term diagnostic testing, using data acquisition equipment or Building Automation System trends to record system operation over a two to three week period, may be used to investigate dynamic interactions between components in the building system.
- J. If tests cannot be completed because of a deficiency outside the scope of the HVAC&R system, document the deficiency and report it to the Owner. After deficiencies are resolved, reschedule tests.
- K. If the testing plan indicates specific seasonal testing, complete appropriate initial performance tests and documentation and schedule seasonal tests.

3.4 HVAC&R SYSTEMS, SUBSYSTEMS, AND EQUIPMENT TESTING PROCEDURES

- A. Boiler Testing and Acceptance Procedures: Testing requirements are specified in HVAC boiler Sections. Provide submittals, test data, inspector record, and boiler certification to the CxA.
- B. HVAC&R Instrumentation and Control System Testing: Field testing plans and testing requirements are specified in Section 230900 "Instrumentation and Control for HVAC" and Section 230993 "Sequence and Operations for HVAC Controls." Assist the CxA with preparation of testing plans.
- C. Pipe system cleaning, flushing, hydrostatic tests, and chemical treatment requirements are specified in HVAC piping Sections. HVAC&R Subcontractor shall prepare a pipe system cleaning, flushing, and hydrostatic testing plan. Provide cleaning, flushing, testing, and treating plan and final reports to the CxA. Plan shall include the following:

- 1. Sequence of testing and testing procedures for each section of pipe to be tested, identified by pipe zone or sector identification marker. Markers shall be keyed to Drawings for each pipe sector, showing the physical location of each designated pipe test section. Drawings keyed to pipe zones or sectors shall be formatted to allow each section of piping to be physically located and identified when referred to in pipe system cleaning, flushing, hydrostatic testing, and chemical treatment plan.
- 2. Description of equipment for flushing operations.
- 3. Minimum flushing water velocity.
- 4. Tracking checklist for managing and ensuring that all pipe sections have been cleaned, flushed, hydrostatically tested, and chemically treated.
- D. Energy Supply System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of hot-water systems and equipment at the direction of the CxA. The CxA shall determine the sequence of testing and testing procedures for each equipment item and pipe section to be tested.
- E. Refrigeration System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of chillers. The CxA shall determine the sequence of testing and testing procedures for each equipment item and pipe section to be tested.
- F. HVAC&R Distribution System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of air, steam, and hydronic distribution systems; special exhaust; and other distribution systems, including HVAC&R terminal equipment and unitary equipment.

END OF SECTION 230800

SECTION 230900 - INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls.
- B. Related Sections include the following:
 - 1. Section 230519 "Meters and Gages for HVAC Piping" for measuring equipment that relates to this Section.
 - 2. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for coordination requirements that relate to this Section.
 - 3. Section 230800 "Commissioning of HVAC" for coordination requirements that relate to this Section.
 - 4. Section 230923 "Control-Voltage Electrical Power Cables" for requirements that relate to this Section.
 - 5. Section 230928 "Pathways for Control-Voltage Cables" for requirements that relate to this Section.
 - 6. Section 233300 "Air Duct Accessories" for dampers that relate to this Section.
 - 7. Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for requirements that relate to this Section.
 - 8. Section 260533 "Raceways and Boxes for Electrical Systems" for requirements that relate to this Section.

1.3 DEFINITIONS

- A. AAC: Advanced Application Controller; Programmable controller serving single piece of equipment and residing on peer to peer or high level building network.
- B. ASC: Application Specific Controller; Pre-programmed controller with specific routines for applicable equipment and residing on lower level or sub-LAN network connected to a BC.
- C. BACnet: A control network technology platform for designing and implementing interoperable control devices and networks.
- D. BAS: Building Automation System.
- E. BC: Building Controller; Programmable controller with input/output points residing on peerto-peer or high level building network.

- F. DDC: Direct digital control.
- G. I/O: Input/output.
- H. Gateway: Device connecting two or more communication networks utilizing different application protocols.
- I. LAN: Local Area Network.
- J. LonWorks: A control network technology platform for designing and implementing interoperable control devices and networks.
- K. MS/TP: Master slave/token passing.
- L. PC: Personal computer.
- M. PID: Proportional plus integral plus derivative.
- N. Router: Device connecting two or more communication networks utilizing the same application protocol.
- O. RTD: Resistance temperature detector.
- P. VPN: Virtual Private Network
- 1.4 SCOPE
 - A. The intent of this specification is to provide a complete and operational BAS designed to accomplish the intent of the sequences of operation.
 - B. Electrical Work: Furnish all control wiring, conduit, relays, contactors and electrical work required as integral part of the instrumentation and control system or indicated on drawings.
 - 1. Control contractor shall provide relays and/or contactors required for operation of single phase motors, 1 hp and smaller. Motor starters for three phase motors and single phase motors larger than 1 hp shall be furnished and installed by Division 26 contractor.
 - C. Mechanical Work: Furnish all wells for water monitoring devices, flow switches and alarms, sensors, etc. to mechanical contractor for installation.
 - D. BAS System: The BAS manufacturer shall furnish and install a fully integrated building automation system, incorporating direct digital control (DDC) for energy management, equipment monitoring and control, and subsystems with open communications capabilities as herein specified.
 - 1. Compatibility: The BAS system shall have a documented history of compatibility by design for a minimum of 15 years. Future compatibility shall be supported for no less than 10 years. Compatibility shall be defined as the ability to upgrade existing field panels to current level of technology, and extend new field panels on a previously installed network. Compatibility shall be defined as the ability for any existing field

panel microprocessor to be connected and directly communicate with new field panels without bridges, routers or protocol converters.

- 2. Architecture: System architectural design shall eliminate dependence upon any single device for alarm reporting and control execution. Each DDC Controller shall operate independently by performing its own specified control, alarm management, operator I/O, and data collection. The failure of any single component or network connection shall not interrupt the execution of any control strategy, reporting, alarming and trending function, or any function at any operator interface device.
- 3. DDC Controllers shall be able to access any data from, or send control commands and alarm reports directly to, any other DDC Controller or combination of controllers on the network without dependence upon a central or intermediate processing device. DDC Controllers shall also be able to send alarm to multiple operator workstations without dependence upon a central or intermediate processing device.
- 4. The system shall be scalable in nature and shall permit expansion of both capacity and functionality through the addition of sensors, actuators, DDC Controllers, and operator devices.
- 5. Spare Capacity: Building Controllers and Advanced Application Controllers shall be selected to provide a minimum of 10% spare I/O point capacity for each point type found at each location. If input points are not universal, 10% of each type is required. If outputs are not universal, 10% of each type is required. A minimum of one spare is required for each type of point used. DDC controllers shall have sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25% of available memory free for future use. Future use of spare capacity shall require providing the field device, field wiring, points database definition, and custom software. No additional Controller boards or point modules shall be required to implement use of these spare points.
- 6. All real time clocks and data file RAM shall battery back-up for a minimum 72 hours and include local and system low battery indication.
- 7. Provide an uninterruptable power supply (UPS) capable of powering the end device for a minimum of four hours, for workstation(s) and building controllers.
- 8. Provide surge transient protection for all DDC controllers and operator workstations.
- 9. Provide static, transient and short-circuit protection on all inputs and outputs. Protect communication lines against incorrect wiring, static transients and induced magnetic interference.
- 10. Provide satisfactory operation without damage at 110% and 85% of rated voltage and at plus 3 Hertz variation in line frequency.
- 11. The existing operator interface is an Webctrl product manufactured by Automated Logic Corporation .
- 12. The BAS system specified herein is an expansion of an existing BAS system manufactured by Automated Logic Corporation. The existing system does utilize BACnet network protocols.
- 13. Communications:
 - a. Communication between building controllers and all operator/server workstations shall be over a high-speed Ethernet network using standard TCP/IP, IEEE 802.3 protocol. All nodes on this network shall be peers. The operator shall not have to identify the panel or address to view or control an object. AACs and ASCs shall be constantly scanned by their respective BC to update point and alarm information. System shall be capable of utilizing the standard open BACnet protocol as specified herein and be able to integrate third-party systems via

existing vendor protocols. System shall be capable of BACnet communication according to ASHRAE standard SPC-135A 2004.

- b. Building controllers and other devices residing on the primary building level network shall communicate via BACnet IP. Devices on secondary sub-networks shall communicate via BACnet MS/TP.
- c. Building Level Networks shall be connected to the existing BACnet server workstation located at the district office via the owner's Ethernet backbone network as specified herein.
- d. Provide system capable of interoperability with the existing operator interface as specified herein.
- e. The system shall be capable of supporting wireless field level networks or sensor communications using a mesh topology and IEEE 802.15.4 network.
- E. Abbreviations, Symbols and Definitions: All letter symbols and engineering unit abbreviations utilized in information displays and printouts shall be fully explained and documented in the documentation provided.

1.5 SYSTEM PERFORMANCE

- A. Comply with the following performance requirements:
 - 1. Graphic Display: Display graphic with minimum 20 dynamic points with current data within 10 seconds. System shall be capable of displaying up to 400 dynamic points per graphic.
 - 2. Graphic Refresh: Update graphic with minimum 20 dynamic points with current data within 8 seconds. Automatically refresh every 15 seconds.
 - 3. Object Command: Reaction time of less than two seconds between operator command of a binary object and device reaction.
 - 4. Object Scan: Transmit change of state and change of analog values to control units or workstation within six seconds.
 - 5. Alarm Response Time: Annunciate alarm at workstation within 15 seconds. Multiple workstations must receive alarms within five seconds of each other.
 - 6. Program Execution Frequency: Run capability of applications as often as five seconds, but selected consistent with mechanical process under control.
 - 7. Performance: Programmable controllers shall execute DDC PID control loops, and scan and update process values and outputs at least once per second.
 - 8. Reporting Accuracy and Stability of Control: Report values and maintain measured variables within tolerances as follows:
 - a. Water Temperature: Plus or minus 1 deg F (0.5 deg C).
 - b. Water Flow: Plus or minus 5 percent of full scale.
 - c. Water Pressure (Absolute & Differential): Plus or minus 2 percent of full scale.
 - d. Space Temperature: Plus or minus 1 deg F (0.5 deg C).
 - e. Ducted Air Temperature: Plus or minus 1 deg F (0.5 deg C).
 - f. Outside Air Temperature: Plus or minus 2 deg F (1.0 deg C).
 - g. Dew Point Temperature: Plus or minus 3 deg F (1.5 deg C).
 - h. Temperature Differential: Plus or minus 0.25 deg F (0.15 deg C).
 - i. Relative Humidity: Plus or minus 2 percent.
 - j. Airflow (Pressurized Spaces): Plus or minus 3 percent of full scale.
 - k. Airflow (Measuring Stations): Plus or minus 5 percent of full scale.
- 1. Airflow (Terminal): Plus or minus 10 percent of full scale.
- m. Air Pressure (Space): Plus or minus 0.01-inch wg (2.5 Pa).
- n. Air Pressure (Ducts): Plus or minus 0.1-inch wg (25 Pa).
- o. Carbon Monoxide: Plus or minus 5 percent of reading.
- p. Carbon Dioxide: Plus or minus 50 ppm.
- q. Electrical: Plus or minus 5 percent of reading (not including utility supplied meters).

1.6 ACTION SUBMITTALS

- A. Provide the following in a submittal booklet. Each booklet shall be an 8-1/2" X 11" loose-leaf 3-ring binder with identification inserts in clear vinyl on the front cover and the back spine. Identification insert shall include building name, owner, controls contractor, design engineer and submittal date. Provide separate sections with the following tabbed dividers.
 - 1. TAB 1 "System Schematics" Provide sequence of operations, schematic flow diagrams, wiring diagrams, object names, point addresses, interface wiring diagrams, panel layouts, and system riser diagrams (architecture). Schematics shall be submitted in 11" X 17" format.
 - 2. TAB 2 "Object List" Provide object lists in 8 ½" x 11" format. Object list shall include for each physical or logical point, the name, description, display units, BACnet object description, object ID, associated device ID, address, object type (AO, AI, DI, DO), initial value, default value, reset limits, alarm high and low limits. Coordinate object names and addresses with system schematics. Also provide in Excel file format on optical disk in binder pocket.
 - 3. Tab 3 "HVAC Plans" HVAC plans in 11"x17" format indicating controlled equipment, control panel and sensor locations.
 - 4. Tab 4 "Object Naming Convention" Indicate the format, structure and standards of typical point names. Provide a list of point names for typical equipment and functions with specific coordinated examples. The addressing scheme shall be coordinated and approved by the owner and engineer.
 - 5. Tab 5 "Valve & Damper Schedule" Provide valve and damper schedules showing size, configuration, CV, system pressures, capacity and location of all equipment.
 - 6. TAB 6 "TAB Data" Empty
 - 7. TAB 7 "System Verification Checklists" Include forms that will be used for point-topoint checkout and calibration verification.
 - 8. TAB 8 "Functional Performance Tests" Empty
 - 9. TAB 9 "Bill of Materials" Bill of materials of equipment indicating quantity, manufacturer, and model number. Include technical data for interface equipment, control units, transducers/transmitters, sensors, actuators, valves, relays/switches, control panels, and operator interface equipment.
 - 10. TAB 10 "Data Sheets" Provide for all control system components. When manufacturer has cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted or clearly indicated by other means. Each submitted piece of literature and drawing shall clearly reference the specification and/or drawing that the submittal is being submitted to cover.
 - a. Provide PICS files indicating the BACnet functionality and configuration of each device. In addition to the requirements of BACnet, Annex A, provide information

on any limitations on the numbers of supported objects in a given device including, specifically, trend log and schedule projects.

- b. Provide documentation on submitted products that have been tested and listed by the BACnet Testing Laboratory (BTL) or a letter on manufacturer's company letterhead indicating the anticipated date by which testing is expected to be completed. If, for any reason, BTL testing and listing has not been completed, a written commitment shall be provided to upgrade installed controls to a version that meets BTL testing and listing requirements should deficiencies be found during BTL testing.
- 11. TAB 11 "Control System Software" Include technical data for operating system software, operator interface, color graphics, and other third-party applications. List color graphics indicating monitored systems, data (connected and calculated) point addresses, output schedule, and operator notations.
- 12. TAB 12 "O&M" Operation and maintenance manuals for each controller, valve, damper, meter or any other device or piece of equipment. O&M manuals shall be specific to the product used for this project and shall specifically identifying the actual product and options used and only contain O&M information pertaining to said product. Submittal of a general series of products is not acceptable. In addition to O&M manuals, the BAS contractor shall provide an executive summary at the front end of the tabbed section. The executive summary should outline the type and location of specific items that require routine maintenance or calibration (i.e., CO_2 sensors) and the general procedure for performing said work.
- 13. TAB 13 "Training" Description of process, report formats and checklists to be used in Part 3: "Control System Demonstration and Acceptance."
- 14. TAB 14 "Service Contacts" Names, addresses, and 24-hour telephone numbers of local factory direct service representatives for equipment and control systems.

1.7 INFORMATIONAL SUBMITTALS

- A. Data Communications Protocol Certificates: Certify that each proposed DDC system component complies with ASHRAE 135.
- B. Qualification Data: For Installer and manufacturer.
- C. Software Upgrade Kit: For Owner to use in modifying software to suit future systems revisions or monitoring and control revisions.
- D. Field quality-control test reports.
- E. Commissioning: For Engineer to use to verify compliance prior to the commissioning demonstration. Refer to this section "Commissioning".
 - 1. Printout of each graphic screen in 8-1/2" x 11" format.
 - 2. Printout of software programming, including comment statements, for each system in 8-1/2" x 11" format.

1.8 CLOSEOUT SUBMITTALS

- A. The contractor shall provide three copies of the following included in an operation and maintenance manual for the use of the owner's operating personnel. Each manual shall be an 8-1/2" X 11" loose-leaf 3-ring binder with identification inserts in clear vinyl on the front cover and the back spine. Identification insert shall include building name, owner, controls contractor, design engineer, commissioning authority and commissioning date. Provide separate sections with the following tabbed dividers. Each of the following shall incorporate asbuilt data derived from the commissioning process.
 - 1. TAB 1 "System Schematics" Approved submittals indicating as-built conditions. Also provide in AutoCAD v2004 drawing format on optical disk in binder pocket.
 - 2. TAB 2 "Object List" Approved submittals Indicating final object names, setpoints, reset limits, alarm high and low limits, default values, etc. Object list shall also identify. Also provide in Excel file format on optical disk in binder pocket.
 - 3. Tab 3 "HVAC Plans" As-built version of submitted HVAC plans in 11"x17" format indicating controlled equipment, control panel and sensor locations.
 - 4. TAB 4 "Valve & Damper Schedule" Approved submittals
 - 5. Tab 5 "Object Naming Convention" Approved submittals
 - 6. TAB 6 "TAB Data" Spread sheet format indicating final flow coefficients for each air flow monitoring station and water meter.
 - 7. TAB 7 "System Verification Checklists" Signed and dated by the installing contractor. This documentation shall include point-to-point verification specified herein and test measurements and system calibrations specified herein. A certification report shall be provided listing the test.
 - 8. TAB 8 "Functional Performance Tests" Copies of FPT forms completed and approved by the commissioning authority and as required to meet requirements of Part 3: "Control System Verification, Demonstration and Acceptance."
 - 9. TAB 9 "Bill of Materials Approved submittals
 - 10. TAB 10 "Data Sheets" Approved submittals
 - 11. TAB 11 "Control System Software" Include technical data for operating system software, operator interface, color graphics, and other third-party applications. List color graphics indicating monitored systems, data (connected and calculated) point addresses, output schedule, and operator notations. Include the following:
 - a. Software operating and upgrade manuals.
 - b. Program Software Backup: On a magnetic media or compact disc, complete with data files.
 - c. Device address list.
 - d. Printout of final software programming and graphic screens.
 - e. Software license required by and installed for DDC workstations and control systems.
 - 12. TAB 12 "O&M" Operation and maintenance manuals for each controller, valve, damper, meter or any other device or piece of equipment. O&M manuals shall be specific to the product used for this project and shall specifically identifying the actual product and options used and only contain O&M information pertaining to said product. Submittal of a general series of products is not acceptable. At minimum, provide the following.

- a. An executive summary at the front end of the tabbed section. The executive summary should outline the type and location of specific items that require routine maintenance or calibration (i.e., CO_2 sensors) and the general procedure for performing said work.
- b. Operator's Manual with procedures for operating control systems, logging on and off, handling alarms, producing point reports, trending data, overriding computer control, and changing set points and variables.
- c. Programming manual or set of manuals with description of programming language and of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.
- d. Engineering, installation, and maintenance manual or set of manuals that explains how to design and install new points, panels, and other hardware; how to perform preventive maintenance and calibration; how to debug hardware problems; and how to repair or replace hardware.
- e. Documentation of all programs created using custom programming language, including set points, tuning parameters, and object database.
- f. Programs and database on optical media.
- g. List of recommended spare parts with part numbers and suppliers.
- h. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware, including computer equipment and sensors.
- i. Interconnection wiring diagrams with identified and numbered system components and devices.
- j. Calibration records and list of set points.
- 13. TAB 13 "Training" Training videos specified herein on DVD format.
- 14. TAB 14 "Service Contacts" Names, addresses, and 24-hour telephone numbers of local factory direct service representatives for equipment and control systems.
- 15. Tab 15 "Warranty" Licenses, guarantees, and warranty documents for equipment and systems.

1.9 QUALITY ASSURANCE

- A. Materials and equipment shall be the catalogued products of manufacturers regularly engaged in production and installation of automatic temperature control systems and shall be manufacturer's latest standard design that complies with the specification requirements. All systems and components shall have been thoroughly tested and proven in actual use for at least two years or as approved by the Engineer.
- B. The installation of the control system shall be performed under the direct supervision of the controls manufacturer with the shop drawings, flow diagrams, bill of materials, component designation or identification number and sequence of operation all bearing the name of the manufacturer. The installing manufacturer shall certify in writing that the shop drawings have been prepared by the equipment manufacturer and that the equipment manufacturer has supervised their installation. In addition, the equipment manufacturer shall certify in writing that the shop drawings were prepared by their company and that all temperature control equipment was installed under their direct supervision.
- C. Installer Qualifications: The control system shall be designed and installed, commissioned and serviced by factory trained personnel.

- 1. Controls Contractor shall have an in-place support facility within 50 miles of the site with technical staff, spare parts inventory and necessary test and diagnostic equipment.
- 2. Controls Contractor shall provide full time, on site, experienced project manager for this work, responsible for direct supervision of the design, installation, start up, and commissioning of the BAS system.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- E. The control system shall comply with the most restrictive requirements of all applicable standards and codes (including those listed below), except when more detailed or stringent requirements are indicated by the Contract Documents.
 - 1. ASHRAE/ANSI 135 2004, BACnet A Data Communication
 - 2. IEEE 802.3 Ethernet Standard
- 1.10 DELIVERY, STORAGE, AND HANDLINGSystem Software: Update to latest version of software at Project completion.COORDINATION
 - A. Products furnished by Control Contractor but installed by Mechanical Contractor:
 - 1. Control Valves.
 - 2. Electronic Actuators.
 - 3. Control Dampers.
 - 4. Flow Meters.
 - 5. Air Flow Stations.
 - 6. Thermal Wells and Sockets.
 - 7. Taps and Tap Isolation Valves.
 - 8. Domestic Water Meter.
 - 9. The control supplier shall provide to the variable volume terminal unit manufacturer the static pressure transmitter, damper actuator, fan control relay, transformer and application specific controller for factory mounting to the boxes prior to shipment to the project.
 - B. Products furnished and installed by Mechanical Contractor but wired by Electrical Contractor:
 - 1. Variable Frequency Drives.
 - C. Products furnished and installed by Mechanical or Electrical Contractor, but integrated to by Control Contractor. Unless noted otherwise, wiring shall be by Control Contractor.:
 - 1. Chiller Controls via Hardwire and BACnet.
 - 2. Boiler Controls via Hardwire.
 - 3. Fire Alarm System via Hardwire.
 - 4. Variable Frequency Drives via BACnet.
 - 5. Control Dampers via Hardwire.
 - 6. Smoke and Fire/Smoke Dampers complete with actuators and end switches via Hardwire.
 - 7. Lighting Control Panels via BACnet.

- D. Electrical Contractor:
 - 1. Wiring of power feeds through all disconnects or starters to electrical motors.
 - 2. Wiring of any remote start/stop and manual or automatic motor speed control devices not furnished by Control Contractor.
 - 3. Wiring of any electrical sub-metering devices furnished by Control Contractor.
 - Enclosure with lockable door for main service digital energy monitor (DEM) and one (1)
 3-pole breaker to provide service disconnect of the voltage sensing leads of the DEM. The DEM shall be located on the secondary service at the building transformer.
- E. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.
- F. Coordinate supply of conditioned electrical branch circuits for control units and operator workstation.

1.11 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer warrants instrumentation and control system free from defects within specified warranty period.
 - 1. Warranties include, but are not limited to, the following:
 - a. Recalibration of sensors.
 - b. Tuning of PID control loops.
 - c. Labor & materials.
 - d. Update of operator workstation software, project specific software, graphics, database, and firmware.
 - 2. System failures during the warranty period shall be adjusted, repaired, or replaced at no charge or reduction in service to the Owner.
 - 3. The Contractor shall respond to the Owner's request for warranty service within 24 hours during customary business hours.
 - 4. Written authorization by Owner must be granted prior to the installation of updates to software, graphics, database, or firmware.
 - 5. Warranty Period: One year from date of Final Completion.

1.12 OWNERSHIP OF PROPRIETARY MATERIAL

- A. All project developed hardware and software shall become the property of the Owner. These include but are not limited to:
 - 1. Project specific graphic images
 - 2. Record drawings
 - 3. Project specific database

- 4. Project specific application programming code
- 5. All project documentation

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 CONTROL SYSTEM

- A. <u>Manufacturers</u>: The following list of approved manufacturers applies to controller software, custom application programming language, building controllers, advanced application controllers, and application specific controllers. All other products specified herein and elsewhere in Division 23 specifications are not required to be manufactured by the below manufacturers.
 - 1. <u>Automated Logic Corporation</u>.
- B. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, accessories, and software connected to distributed controllers operating in multiuser, multitasking environment on token-passing network and programmed to control mechanical systems. An operator workstation permits interface with the network via dynamic color graphics with each mechanical system, building floor plan, and control device depicted by point-and-click graphics.

2.3 COMMUNICATIONS

- A. Device Requirements: Devices supplied to meet the functional and operational requirements of this specification shall conform, at a minimum, to one of the BACnet device profiles specified herein and contained in BACnet, Annex L: BACnet Building Controller (B-BC), BACnet, Advanced Application Controller (B-AAC) or BACnet Application Specific Controller (B-ASC). The interoperability requirements of such devices are contained in BACnet, Annex L.
- B. Network Topology: Communication involving control devices (i.e., all types of controllers and operator interfaces) shall conform to ANSI/ASHRAE Standard 135-2004, BACnet. The network topology (architecture) shall consist of the following levels:
 - 1. Management Level Network: Ethernet based high speed data link between standard client and server workstations.
 - 2. Peer-to-Peer Primary Building Level Network: Ethernet based high speed data link between building controllers, advanced application controllers, servers and operator workstations.

- 3. Master-Slave Secondary Sub-Networks: Moderate speed data link between application specific controllers and associated building controller.
- C. Management Level Network: Devices on the Management Level Network shall communicate over Ethernet utilizing standard TCP/IP, IEEE 802.3.
 - 1. Client workstations shall direct connect to the Ethernet Management Level Network without the use of an interposing device. Servers and Operator Workstations shall be capable of simultaneous direct connection and communication with BACnet/IP andTCP/IP level networks without the use of interposing devices. The Management Level Network shall not impose a maximum constraint on the number of connected workstations.
 - 2. Any workstation on the Management Level Network shall have transparent communication with controllers on the building level networks connected via Ethernet.
 - 3. Any break in Ethernet communication from a workstation to the controllers on the building level networks shall result in a notification at the workstation. Any break in Ethernet communication between the standard client workstations and servers on the Management Level Network shall result in a notification at each workstation.
 - 4. System software applications will run as a service to allow communication with Building Level Network Controllers without the need for user log in. Closing the application or logging off shall not prevent the processing of alarms, network status, panel failures, and trend information.
 - 5. Access to the system database shall be available from any standard client workstation on the Management Level Network.
 - 6. Client access to client-server workstation configurations over the Internet network shall be available via Web browser interface.
 - 7. Thin Client access to client-server workstation configurations via Windows Terminal Services shall provide multiple, independent sessions of the workstations software. Terminal Services clients shall have full functionality, without the need to install the workstation software on the local hard drive.
- D. Primary Building Level Network: Devices on the Building Level Network shall communicate using BACnet/IP over Ethernet.
 - 1. Operator Workstations, Server Workstations, All Building Controllers and Advanced Application Controllers shall directly reside on the building level BACnet/IP Ethernet network such that communications may be executed directly between Building Controllers and directly between server, Building Controllers and Advanced Application Controllers on a peer-to-peer basis. Systems that operate via polled response or other types of protocols that rely on a central processor, file server, or similar device to manage panel-to-panel or device-to-device communications shall not be acceptable.
 - 2. This Building Level Network shall be connected to the owner's backbone network (Management Level Network). Unless otherwise specified, the connection shall be via a 10/100BASE-T port provided by the Owner. The location of the jack shall be coordinated with the owner's IT department. The Contractor shall also provide any additional data communication hardware, such as hubs and repeaters, which may be needed to interconnect the supplied BAS equipment and to connect to the Owner's backbone network.
 - 3. All operator interfaces shall have the ability to access all point status and application report data or execute control functions for any and all other devices. Access to data shall be based upon logical identification of building equipment. No hardware or

software limits shall be imposed on the number of devices with global access to the network data.

- 4. All devices on the building level network shall:
 - a. Auto-sense 10/100 Mbps networks.
 - b. Receive an IP Address from a Dynamic Host Configuration Protocol (DHCP) Server or be configured with a Fixed IP Address.
 - c. Resolve Name to IP Addresses for devices using a Domain Name Service (DNS) Server on the Ethernet network.
- 5. The building level network shall provide the following minimum performance:
 - a. Provide high-speed data transfer rates for alarm reporting, report generation from multiple controllers and upload/download efficiency between network devices. System performance shall insure that an alarm occurring at any controller is displayed at any PC workstations, all Building controllers, and other alarm printers within 15 seconds.
 - b. Message and alarm buffering to prevent information from being lost.
 - c. Error detection, correction, and re-transmission to guarantee data integrity.
 - d. The building level network shall allow the Building Controllers to access any data from, or send control commands and alarm reports directly to, any other Building Controller or combination of controllers on the network without dependence upon a central or intermediate processing device. Building Controllers shall send alarm reports to multiple operator workstations without dependence upon a central or intermediate processing device. The network shall also allow any Building controller to access, edit, modify, add, delete, back up, restore all system point database and all programs.
 - e. The building level network shall allow the Building Controllers to assign password access and control priorities to each point individually. The logon password (at any PC workstation or portable operator terminal) shall enable the operator to monitor, adjust and control only the points that the operator is authorized for. All other points shall not be displayed at the PC workstation or portable terminal. (e.g. all base building and all tenant points shall be accessible to any base building operators, but only certain base building and tenant points shall be accessible to tenant building operators). Passwords and priorities for every point shall be fully programmable and adjustable.
 - f. Devices containing custom programming must reside on the Building Level Network and shall be provided with non-volatile memory.
- E. Secondary Sub-Network: Devices on sub-networks shall communicate using BACnet MS/TP network protocol.
 - 1. Sub-networks shall support a family of application specific controllers for terminal equipment.
 - 2. The Application Specific Controllers shall communicate bi-directionally with the building level network through Building Controllers for transmission of global data.
 - 3. A maximum of 30 terminal equipment controllers shall be configured on individual subnetwork trunks to insure adequate global data and alarm response times.
 - 4. Where indicated communication over the secondary sub-network may utilize wireless MESH topology based on IEEE 802.15.4 network. Point to point communication shall be acceptable.

- F. Provide all communication media, connectors, repeaters, hubs, routers and gateways necessary for the internetwork and as necessary for communication with third party equipment control systems.
 - 1. Router Requirements: In the event that devices are provided that do not use BACnet/IP over Ethernet or BACnet MS/TP as their communication technology, BACnet routers shall be provided that route between BACnet/IP or BACnet MS/TP and the other BACnet LAN type(s). These routers shall conform to the specifications of BACnet, Clause 6. The use of BACnet LAN types other than those specified herein for each network requires the specific approval of the Owner and Engineer.
 - 2. Gateways: Devices that use BACnet as their native protocol are preferred. The use of gateways, in circumstances where no native BACnet device is available, requires the specific approval of the Owner and Engineer.
- G. Communication services over the internetwork shall result in operator interface and value passing that is transparent to the internetwork architecture as follows:
 - 1. Connection of an operator interface device to any one controller on the internetwork will allow the operator to interface with all other controllers as if that interface were directly connected to the other controllers. Data, status information, reports, system software, custom programs, etc., for all controllers shall be available for viewing and editing from any one controller on the internetwork.
 - 2. All database values (e.g., objects, software, variables, custom program variables) of any one controller shall be readable by any other controller on the internetwork. This value passing shall be automatically performed by a controller when a reference to an object name not located in that controller is entered into the controller's database. An operator/installer shall not be required to set up any communication services to perform internetwork value passing.
- H. The time clocks in all controllers shall be automatically synchronized daily via the internetwork. An operator change to the time clock in any controller shall be automatically broadcast to all controllers on the internetwork. System shall automatically adjust for daylight saving and standard time.
- I. Portable Operator Interface: All controllers shall have a communication port for connections with a portable operator interface using the BACnet Data Link/Physical layer protocol. Communication shall support memory downloads and other commissioning and troubleshooting operations.

2.4 DDC CONTROLLERS

- A. Control Units: Modular, comprising processor board with programmable, nonvolatile, randomaccess memory; local operator access and display panel; integral interface equipment; and backup power source.
 - 1. Units monitor or control each I/O point; process information; execute commands from other control units, devices, and operator stations; and download from or upload to operator workstation or diagnostic terminal unit.
 - 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 - a. Global communications.
 - b. Discrete/digital, analog, and pulse I/O.
 - c. Monitoring, controlling, or addressing data points.
 - d. Software applications, scheduling, and alarm processing.
 - e. Testing and developing control algorithms without disrupting field hardware and controlled environment.
 - 3. Standard Application Programs:
 - a. Electric Control Programs: Demand limiting, duty cycling, automatic time scheduling, start/stop time optimization, night setback/setup, on-off control with differential sequencing, staggered start, antishort cycling, PID control, DDC with fine tuning, and trend logging.
 - b. HVAC Control Programs: Optimal run time, supply-air reset, and enthalpy switchover.
 - c. Chiller Control Programs: Control function of condenser-water reset, chilledwater reset, and equipment sequencing.
 - d. Programming Application Features: Include trend point; alarm processing and messaging; weekly, monthly, and annual scheduling; energy calculations; run-time totalization; and security access.
 - e. Remote communications.
 - f. Maintenance management.
 - g. Units of Measure: Inch-pound and SI (metric).
 - 4. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
 - 5. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.
- B. Local Control Units: Modular, comprising processor board with electronically programmable, nonvolatile, read-only memory; and backup power source.
 - 1. Units monitor or control each I/O point, process information, and download from or upload to operator workstation or diagnostic terminal unit.
 - 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 - a. Global communications.
 - b. Discrete/digital, analog, and pulse I/O.

- c. Monitoring, controlling, or addressing data points.
- 3. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
- 4. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.
- C. I/O Interface: Hardwired inputs and outputs may tie into system through controllers. Protect points so that shorting of the point to itself, another point, or ground will cause no damage to controllers. Protect points so that contact with a voltage up to 24-V of any duration will cause no damage to controllers.
 - 1. Binary Inputs: Allow monitoring of on-off signals from remote devices and sensing "dry contact" closure without external power. Provide a wetting current of at least 12 mA to be compatible with commonly available control devices. Protect against effects of contact bounce and noise.
 - 2. Pulse Accumulation Inputs: Accept up to 10 pulses per second. Conform to all requirements of Binary Inputs.
 - 3. Analog Inputs: Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals. Analog Inputs shall be compatible with and field configurable to commonly available sensing devices.
 - 4. Binary Outputs: Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation with three-position (on-off-auto) override switches and status lights.
 - 5. Analog Outputs: Provide modulating signal, either low voltage (0- to 10-V dc) or current (4 to 20 mA) with two-position (auto-manual) override switches, manually adjustable potentiometer for manual override, and status lights. Analog Outputs shall not exhibit a drift greater than 0.4% of range per year.
 - 6. Tri-State Outputs: Provide two coordinated binary outputs for control of three-point, floating-type electronic actuators. Use of three-point, floating-type devices shall be limited to zone control and terminal unit control applications.
 - 7. Universal I/Os: Provide software selectable binary or analog outputs. Conform to the provisions of this section that are appropriate to their designated use.
 - 8. System Object Capacity: The system size shall be expandable to at least twice the number of input / output objects required for this project. Additional controllers (along with associated devices and wiring) shall be all that is necessary to achieve this capacity requirement. The operator interface installed for this project shall not require any hardware additions in order to expand this system.
- D. Power Supplies: UL listed transformers with Class 2 current-limiting type or overcurrent protection in primary and secondary circuits for Class 2 service in accordance with NEC requirements; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:
 - 1. Output ripple of 5.0 mV maximum peak to peak.
 - 2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.
 - 3. Built-in overvoltage and overcurrent protection and be able to withstand 150 percent overload for at least 3 seconds without failure.

E. Power Line Filtering:

- 1. Isolation for all network and field point terminations to suppress induced voltage transients consistent with the following:
 - a. RF-Conducted Immunity (RFCI) per ENV 50141 (IEC 1000-4-6) at 3V
 - b. Electro Static Discharge (ESD) Immunity per EN 61000-4-2 (IEC 1000-4-2) at 8 kV air discharge, 4 kV contactA
 - c. Electrical Fast Transient (EFT) per EN 61000-4-4 (IEC 1000-4-4) at 500 V signal, 1 kV power
 - d. Output Circuit Transients per UL 864 (2,400V, 10A, 1.2 Joule max)
- 2. All electric wiring that serves as power for the computer system, microprocessors, or other field panels shall have surge protective devices installed to suppress induced voltage transients consistent with IEEE standard 587-1980.
 - a. Unit shall provide continuous non-interrupting protection with no degradation in protection capabilities.
 - b. Unit shall have instant automatic reset after safely eliminating transient surges from switching or other forms of transient overvoltages.
 - c. Voltage clamping level shall be 120 percent of nominal line voltage.
- 3. Internal or external transient voltage and surge suppression for workstations or controllers with the following:
 - a. Minimum dielectric strength of 1000 V.
 - b. Maximum response time of 10 nanoseconds.
 - c. Minimum transverse-mode noise attenuation of 65 dB.
 - d. Minimum common-mode noise attenuation of 150 dB at 40 to 100 Hz.

2.5 ELECTRONIC SENSORS

- A. Description: Vibration and corrosion resistant; for wall, immersion, or duct mounting as required.
- B. RTDs and Transmitters:
 - 1. Available <u>Manufacturers</u>:
 - a. <u>BEC Controls Corporation</u>.
 - b. <u>MAMAC Systems, Inc</u>.
 - c. <u>RDF Corporation</u>.
 - 2. Accuracy: Plus or minus 0.2 percent at calibration point.
 - 3. Wire: Twisted, shielded-pair cable.
 - 4. Element Material: Platinum.
 - 5. Insertion Elements in Ducts: Single point; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft. (0.84 sq. m). Length of element shall extend into middle third of duct.

- 6. Averaging Elements in Ducts: 5 ft. long per 10 sq. ft. of duct cross section, flexible; use where prone to temperature stratification or where ducts are larger than 9 sq. ft. (1 sq. m).
- 7. Insertion Elements for Liquids: Stainless-steel socket with minimum insertion length of 2-1/2 inches (64 mm).
- 8. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 - a. Set-Point Adjustment: Concealed .
 - b. Set-Point Indication: Concealed .
 - c. Thermometer: Concealed .
 - d. Color: White
 - e. Orientation: Vertical.
- 9. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.
- 10. Humidity Sensors: Capacitive sensor.<u>Manufacturers</u>:
 - a. <u>BEC Controls Corporation</u>.
 - b. <u>General Eastern Instruments</u>.
 - c. <u>MAMAC Systems, Inc</u>.
 - d. <u>Vaisala</u>.
- 11. Accuracy: 2 percent full range with linear output.
- 12. Room Sensor Range: 0 to 100 percent relative humidity.
- 13. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 - a. Set-Point Adjustment: Concealed .
 - b. Set-Point Indication: Concealed .
 - c. Color: White
 - d. Orientation: Vertical.
- 14. Duct Sensor: 20 to 80 percent relative humidity range with element guard and mounting plate.
- 15. Duct and Sensors: With element guard and mounting plate, range of 0 to 100 percent relative humidity.
- C. Pressure Transmitters/Transducers:
 - 1. <u>Manufacturers</u>:
 - a. <u>BEC Controls Corporation</u>.
 - b. <u>General Eastern Instruments</u>.
 - c. <u>MAMAC Systems, Inc</u>.
 - d. Setra.
 - e. <u>TCS/Basys Controls</u>.
 - f. <u>Vaisala</u>.
 - 2. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 - a. Accuracy: 2 percent of full scale with repeatability of 0.5 percent.
 - b. Output: 4 to 20 mA.

- c. Building Static-Pressure Range: 0- to 0.25-inch wg (0 to 62 Pa).
- d. Duct Static-Pressure Range: 0- to 5-inch wg (0 to 1240 Pa).
- 3. Water Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig (1034-kPa) operating pressure; linear output 4 to 20 mA. Provide suitable mounting provisions and block and bleed valves.
- 4. Water Differential-Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig (1034-kPa) operating pressure and tested to 300-psig (2070-kPa); linear output 4 to 20 mA. Provide suitable mounting provisions and 3-valve manifold.
- 5. Differential-Pressure Switch (Air or Water): Snap acting, with pilot-duty rating and with suitable scale range and differential.
- 6. Pressure Transmitters: Direct acting for gas, liquid, or steam service; range suitable for system; linear output 4 to 20 mA.

2.6 STATUS SENSORS

A. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements, and tested to provide positive indication of belt failure.

2.7 RELAYS

A. Control Relays: UL listed, with dust cover and LED "energized" indicator. Contact rating, configuration, and coil voltage shall be suitable for application.

2.8 GAS DETECTION EQUIPMENT

A. Carbon Dioxide Sensor and Transmitter: Single detectors using solid-state infrared sensors; suitable over a temperature range of 23 to 130 deg F (minus 5 to plus 55 deg C) and calibrated for 0 to 2 percent, with continuous or averaged reading, 4- to 20-mA output;, for wall mounting.

2.9 FLOW MEASURING STATIONS

- A. Thermistor Type Airflow Station:
 - 1. <u>Manufacturers</u>:
 - a. <u>Ebtron, Inc</u>.
 - 2. Accuracy (Airflow): Plus or minus 2% of reading with repeatability of 0.25 percent. Flow measurement drift shall not exceed manufacturer's repeatability statement for the life of the equipment.
 - 3. Accuracy (Temperature): Plus or minus 0.15 deg F (0.08 deg C).
 - 4. Construction: One glass encapsulated self-heated thermistor and one glass encapsulated thermistor temperature sensor for each sensing point. Support struts and brackets shall be tubular aluminum extrusion.

- 5. Electronics: Microprocessor based, solid-state in aluminum enclosure with LCD display. Use NEMA 4 enclosure for exterior installation. Provide transmitter with 4-20 mA analog output signals.
- 6. Sensor probes shall be "Plug and Play" type and shall not require matching to transmitter.
- 7. Duct & Plenum Installations: Gold Series
- 8. Fan Inlet: Hybrid Series
- B. Velocity Pressure Airflow Station:
 - 1. Type: Multi-point, multi-axis flow ring or cross sensor. Single point or flow bar sensors are not acceptable.
 - 2. Sensor shall be capable of maintaining airflow to within plus or minus 5% of rated unit airflow setpoint with 1.5 duct diameters straight duct upstream from the unit.

2.10 DIGITAL ENERGY MONITORS

- A. Manufacturers:
 - 1. Veris.
- B. Three-phase digital watt-meters with pre-wired current transmitters (CT), capable of mounting directly on a power bus, UL listed.
 - 1. All watt-meters electronics shall be housed within the CTs.
 - 2. Diagnostics visible to the installing electrician (without an operator interface) shall indicate proper operation, defective wiring or low power-factor, device malfunction, and over-load condition.
 - 3. The device shall comply with ANSI C12.1 accuracy specification. The minimum CT/meter combined accuracy shall be no greater than 1% of reading over a 5% to 100% of rated load. The meter shall not require calibration.
 - 4. The watt-meter shall directly connect to 208- or 480-V ac power feeds with no potential transformer. In-line fuses for each voltage tap phase shall be included.
 - 5. Current Transmitters (CT): Split-core, volt-signal type.
 - a. CTs shall not require shorting blocks.
 - b. Sized to accommodate loads ranging from 100 to 2400 Amps.
 - 6. The information and capabilities provided by the watt-meter shall include the following:
 - a. Current, per phase and three-phase total.
 - b. Voltage, per phase and three-phase total, phase-to-phase and phase-to-neutral.
 - c. Real Power (kW), per phase and three-phase total.
 - d. Reactive Power (kVAR), three-phase total.
 - e. Apparent Power (kVA), three-phase total.
 - f. Power Factor, per phase and three-phase total.
 - g. Consumption (kWh), three-phase total.
 - 7. The watt-meter shall reside directly on the secondary sub-network and shall communicate using BACnet protocols.

2.11 ACTUATORS

- A. Electric Motors: Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 - 1. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 2. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
 - 3. Nonspring-Return Motors for Valves Larger Than NPS 2-1/2 (DN 65): Size for running torque of 150 in. x lbf (16.9 N x m) and breakaway torque of 300 in. x lbf (33.9 N x m).
 - 4. Spring-Return Motors for Valves Larger Than NPS 2-1/2 (DN 65): Size for running and breakaway torque of 150 in. x lbf (16.9 N x m).
 - 5. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft. (2.3 sq. m): Size for running torque of 150 in. x lbf (16.9 N x m) and breakaway torque of 300 in. x lbf (33.9 N x m).
 - 6. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft. (2.3 sq. m): Size for running and breakaway torque of 150 in. x lbf (16.9 N x m).
- B. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 - 1. <u>Manufacturers</u>:
 - a. <u>Belimo Aircontrols (USA), Inc</u>.
 - 2. Valves: Size for torque required for valve close off at maximum pump differential pressure.
 - 3. Dampers: Size for running torque calculated as follows:
 - a. Parallel-Blade Damper with Edge Seals: 7 inch-lb/sq. ft. (86.8 kg-cm/sq. m) of damper.
 - b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. (62 kg-cm/sq. m) of damper.
 - c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft (49.6 kg-cm/sq. m) of damper.
 - d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. (37.2 kg-cm/sq. m) of damper.
 - e. Dampers with 2- to 3-Inch wg (500 to 750 Pa) of Pressure Drop or Face Velocities of 1000 to 2500 fpm (5 to 13 m/s): Increase running torque by 1.5.
 - f. Dampers with 3- to 4-Inch wg (750 to 1000 Pa) of Pressure Drop or Face Velocities of 2500 to 3000 fpm (13 to 15 m/s): Increase running torque by 2.0.
 - 4. Coupling: V-bolt and V-shaped, toothed cradle.
 - 5. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
 - 6. Fail-Safe Operation: Mechanical, spring-return mechanism. Provide external, manual gear release on nonspring-return actuators.
 - 7. Power Requirements (Two-Position Spring Return): 24 -V ac.
 - 8. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.

- 9. Proportional Actuators
- 10. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
- 11. Temperature Rating: 40 to 104 deg F (5 to 40 deg C).
- 12. Temperature Rating (Smoke Dampers): Minus 22 to plus 250 deg F (Minus 30 to plus 121 deg C).
- 13. Run Time: 60 seconds .

2.12 CONTROL VALVES

- A. Available <u>Manufacturers</u>:
 - 1. Danfoss Inc.; Air Conditioning & Refrigeration Div.
 - 2. <u>Erie Controls</u>.
 - 3. <u>Hayward Industrial Products, Inc</u>.
 - 4. <u>Magnatrol Valve Corporation</u>.
 - 5. <u>Neles-Jamesbury</u>.
 - 6. Parker Hannifin Corporation; Skinner Valve Division.
 - 7. <u>Pneuline Controls</u>.
 - 8. <u>Sauter Controls Corporation</u>.
 - 9. Belimo.
- B. Control Valves: Factory fabricated, of type, body material, and pressure class based on maximum pressure and temperature rating of piping system, unless otherwise indicated.
- C. Hydronic system globe valves shall have the following characteristics:
 - 1. NPS 2 (DN 50) and Smaller: Class 125 bronze body, bronze trim, rising stem, renewable composition disc, and screwed ends with backseating capacity repackable under pressure.
 - 2. NPS 2-1/2 (DN 65) and Larger: Class 125 iron body, bronze trim, rising stem, plug-type disc, flanged ends, and renewable seat and disc.
 - 3. Internal Construction: Replaceable plugs and stainless-steel or brass seats.
 - a. Single-Seated Valves: Cage trim provides seating and guiding surfaces for plug on top and bottom.
 - b. Double-Seated Valves: Balanced plug; cage trim provides seating and guiding surfaces for plugs on top and bottom.
 - 4. Sizing: 5-psig (35-kPa) maximum pressure drop at design flow rate or the following:
 - a. Two Position: Line size.
 - b. Two-Way Modulating: Either the value specified above or twice the load pressure drop, whichever is more.
 - c. Three-Way Modulating: Twice the load pressure drop, but not more than value specified above.
 - 5. Flow Characteristics: Two-way valves shall have equal percentage characteristics; threeway valves shall have linear characteristics.

- 6. Close-Off (Differential) Pressure Rating: Combination of actuator and trim shall provide minimum close-off pressure rating of 150 percent of total system (pump) head for two-way valves and 100 percent of pressure differential across valve or 100 percent of total system (pump) head.
- D. Butterfly Valves: 200-psig (1380-kPa), 150-psig (1034-kPa) maximum pressure differential, ASTM A 126 cast-iron or ASTM A 536 ductile-iron body and bonnet, extended neck, stainless-steel stem, field-replaceable EPDM or Buna N sleeve and stem seals.
 - 1. Body Style: Lug.
 - 2. Disc Type: Aluminum bronze .
 - 3. Sizing: 5-psig (7-kPa) maximum pressure drop at design flow rate.

2.13 CONTROL CABLE

A. Electronic and fiber-optic cables for control wiring are specified in Section 271500 "Communications Horizontal Cabling."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the project plans thoroughly for control device and equipment locations. Report any discrepancies, conflicts, or omissions to the Architect/Engineer for resolution before starting rough-in work.
- B. Inspect the site to verify that equipment is installable as shown. Report any discrepancies, conflicts, or omissions to the Architect/Engineer for resolution before starting rough-in work.
- C. Examine drawings and specifications for work of others. Report inadequate headroom or space conditions or other discrepancies to the Engineer and obtain written instructions for changes necessary to accommodate work of this section with work of others. The Controls Contractor shall perform at his expense necessary changes in specified work caused by failure or neglect to report discrepancies.
- D. Verify that conditioned power supply is available to control units and operator workstation.

3.2 **PROTECTION**

- A. Control Contractor shall protect against and be liable for damage to work and to material caused by Contractor's work or employees.
- B. Control Contractor shall be responsible for work and equipment until inspected, tested, and accepted.
- C. Protect material not immediately installed. Close open ends of work with temporary covers or plugs during storage and construction to prevent entry of foreign objects.

3.3 INSTALLATION

- A. Connect and configure equipment and software to achieve sequence of operation specified.
- B. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 60 inches (1530 mm) above the floor.
 - 1. Install averaging elements in ducts and plenums in crossing or zigzag pattern.
- C. Install guards on thermostats in the following locations:1. Where indicated.
- D. Install automatic dampers according to Section 233300 "Air Duct Accessories."
- E. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.
- F. Install labels and nameplates to identify control components according to Section 230553 "Identification for HVAC Piping and Equipment."
- G. Install hydronic instrument wells, valves, and other accessories according to Section 232113 "Hydronic Piping."
- H. Install duct volume-control dampers according to Section 233113 "Metal Ducts" and Section 233116 "Nonmetal Ducts."
- I. Install electronic and fiber-optic cables according to Section 271500 "Communications Horizontal Cabling."

3.4 INSTALLATION OF SENSORS

- A. Install sensors according to manufacturer's recommendations.
- B. Sensors shall be readily accessible and installed in such a manner as to allow for easy replacement.
- C. Sensors must be installed in such a manner that prevents condensation from making direct contact with the sensor's electronic components.
- D. Mount sensors rigidly and adequately for operating environment.
- E. Air seal wires attached to sensors in their raceways or in the wall to prevent sensor readings from being affected by air transmitted from other areas.
- F. Use averaging sensors in mixing plenums and hot and cold decks. Install averaging sensors in a serpentine manner vertically across the duct. Support each bend with a capillary clip.
- G. Install mixing plenum low-limit sensors in a serpentine manner horizontally across the duct. Support each bend with a capillary clip.

- H. Install pipe-mounted temperature sensors in wells. Install liquid temperature sensors with heatconducting fluid in thermal wells.
- I. Install outdoor air temperature sensors on north wall at designated location with sun shield.
- J. Differential Air Static Pressure:
 - 1. Supply Duct Static Pressure: Pipe high-pressure tap to duct using a pitot tube. Make pressure tap connections according to the manufacturer's recommendations.
 - 2. Return Duct Static Pressure: Pipe low-pressure tap to duct using a pitot tube. Make pressure tap connections according to the manufacturer's recommendations.
 - 3. Building Static Pressure: Pipe pressure sensor's low-pressure to the static pressure port located on the outside of the building through a high-volume accumulator. Pipe high-pressure port to a location behind a thermostat cover.
- K. Piping to pressure transducer pressure ports shall contain a capped test port adjacent to the transducer.
- L. Pressure transducers, except those controlling individual room controllers, shall be located in control panels, not on monitored equipment or on ductwork. Mount transducers in a vibration-free location accessible for service without the use of ladders or special equipment.
- M. Mount gauge tees adjacent to air and water differential pressure taps. Install shut-off valves before tee for water gauges.

3.5 ELECTRICAL WIRING AND CONNECTION INSTALLATION

- A. Provide all electrical work required as an integral part of the digital control work. Install a complete wiring system for the control system including wire and miscellaneous materials as required for mounting and connecting control devices.
- B. Electrical control and power wiring, contactors, and relays required for BAS equipment, damper and valve actuators, and local control panels, not specifically identified in the Division 26 sections as electrical work or shown on the electrical drawings, is work of this section. If additional circuits need to be designated for this equipment, the Control Contractor shall include the cost to add these circuits.
- C. Control panels serving equipment fed by emergency power shall also be served by emergency power.
- D. Install raceways, boxes, and cabinets for low-voltage conductors according to Section 260533 "Raceways and Boxes for Electrical Systems."
- E. Install building wire and cable according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- F. Install pathways, boxes, and cabinets for control-voltage cabling according to Section 230928 "Pathways for Control-Voltage Cables."

- G. Install signal and communication cable according to Section 230923 "Control-Voltage Electrical Power Cables."
 - 1. Conceal cable, except in mechanical rooms and areas where other conduit and piping are exposed.
 - 2. Install exposed cable in raceway.
 - 3. Install concealed cable in raceway.
 - 4. Bundle and harness multiconductor instrument cable in place of single cables where several cables follow a common path.
 - 5. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
 - 6. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.
 - 7. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.
- H. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.
- I. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

3.6 PROGRAMMING

- A. Provide software programming for the system as per specifications and adhere to the sequences of operation provided.
- B. Provide all other system programming necessary for the operation of the system but not specified in the sequences of operation.
- C. Imbed into the control program sufficient comment statements to clearly describe each section of the program. The comment statements shall reflect the language used in the sequence of operation.
- D. Provide a separate program for each major HVAC system.

3.7 CONTROLLERS

- A. Provide a separate controller for each major HVAC system. Controller shall be located within the same room as equipment. All points associated with a single system shall reside in a single controller. Points used for control loop reset, such as outside air or space temperature, are exempt from this requirement.
- B. Route all controllers for terminal units through the controller for the air handling unit associated with the terminal units.
- C. Motors in motor control centers (MCC) shall be controlled from the DDC controller associated with the HVAC system. It shall not be acceptable to control all motors in a MCC from one DDC controller dedicated to the MCC. The intent of this specification is that the loss of one

DDC controller shall not affect the operation of other HVAC system, but only for the points connected to the DDC controller.

D. Install software in controllers.

3.8 OPERATOR INTERFACE

- A. Provide all the labor necessary to install, initialize, start-up, and trouble-shoot all operator interface software and their functions as described in this section. This includes any operating system software, the operator interface database, and any third party software installation and integration required for successful operation of the operator interface.
- B. Install software in existing server(s). Implement all features of programs to specified requirements and as appropriate to sequence of operation.
- C. Upgrade and otherwise modify existing system software to integrate new control sequences into existing system as appropriate to sequence of operation.
- D. Dynamic Data Display:
 - 1. Point lists shall be organized on a per field device basis.
 - 2. If the software provides for the sub-division of point data within a field device, the data shall be organized by physical sub-system as a minimum (fan section, mixed air section, etc.)
 - 3. The workstation shall be configured to automatically update values without any action by the operator.
 - 4. Value updates in points lists shall be configured to update at least once every 5 seconds.
 - 5. Binary data shall be configured to display state descriptors (OFF, ON, OPEN, CLOSED, etc.) and not the states of 0 and 1.
 - 6. Analog data displays shall include engineering units and shall not report values more accurate than the device can measure. Values shall be reported consistent with the following:
 - a. Temperatures shall be reported to 1 decimal place.
 - b. Percentages shall be reported as integers.
 - c. Velocities shall be reported as integers.
 - d. Flow volumes shall be reported as integers.
 - e. Pressures shall be reported to 1 or 2 decimal places, as determined by the control setpoint.
 - f. Consumptions shall be reported as integers.
 - g. Dampers and valve positions shall be reported as "% OPEN".
 - 7. All temporary points used for debugging or tuning, such as PID loop outputs, shall be removed from the display.
 - 8. All text fields associated with a specific element of data shall be programmed to provide the maximum amount to the operator.
- E. Graphic Pages:
 - 1. Hierarchy:

- a. The organization of graphic pages shall be from a global level down to a very detailed level through a series of links.
- b. Linking shall allow the operator to move down the hierarchy, up the hierarchy, and laterally within the hierarchy.
- 2. Hierarchy Outline:
 - a. Site Plan Page
 - b. Utility Management Page
 - c. Building Graphic Page
 - d. Floor Plan Page
 - e. Central Plant Page
 - f. Central Plant Equipment Component
 - g. Central Plant Configuration Page
 - h. Delivery System Page
 - i. Delivery System Configuration Page
 - j. Terminal Equipment Summary Page
 - k. Terminal Unit Page
- 3. For all points on a graphic page that are subject to being under manual or test mode, the display shall indicate when test mode or manual mode has been applied to the point.
- 4. Graphic Page Requirements:
 - a. The sequence of operations and points lists define the buildings and all of the equipment items for which graphic pages shall be constructed as described above.
 - b. The Contractor shall develop similar additional graphic pages to be defined during the construction period as follows:
 - 1) Up to 5 additional pages per building.
 - 2) Up to 20 additional global pages.
- F. Alarm Processing:
 - 1. All alarms required by the sequence of operation shall be fully configured for delivery to the operator workstations and the alarm files.
 - 2. A common alarm file shall be established to receive alarms from all of the field devices.
 - 3. A separate alarm file shall be established on a per building basis to receive just the alarms from that building.
 - 4. The alarm messages shall be descriptive and include as a minimum:
 - a. System identification.
 - b. Date.
 - c. Time to the second.
 - d. Nature of the alarm, such as high value, low value, or failure.
 - 5. The system shall be configured to send an alarm message on return to normal.
 - 6. All users shall receive all alarms.
- G. Reports:

- 1. All reports and trends required by the sequence of operation shall be fully configured for delivery to the operator workstations.
- 2. All trends shall be configured to retain all historical data samples for a minimum of one week prior to the current date and time.

3.9 BACNET CONFIGURATIONS

- A. BACnet Interoperability by Area:
 - 1. Data Sharing: Data Sharing requirements apply to the exchange of information between BACnet devices for archival storage, generating graphics and reports, the sharing of common sensor or calculated values, carrying out interlocked control strategies, and the modification of setpoints or other operational parameters. All such data to be exchanged shall be represented as BACnet objects and conveyed using BACnet messages. Only standard BACnet objects and messages may be used to implement data sharing requirements unless the Owner explicitly approves the non-standard extensions. Any extensions to BACnet shall be fully documented in the manner used within the BACnet standard. Submission of such documentation is a prerequisite for obtaining approval of an extension.
 - a. Points List: The Contractor shall provide devices installed and configured with all points indicated in the BAS points list. For the sequence of operations and other functionality described in this specification to be fully implemented, the Contractor shall provide any additional points needed.
 - b. Data Presentation: In the event that workstation/web server capabilities have been specified, the following characteristics shall apply to graphic displays:
 - 1) The graphic displays shall include schematic diagrams of the systems being displayed.
 - 2) When a graphic display is being viewed all values displayed shall be updated when a change of value (COV) notification is received or, if COV is not implemented, within five seconds.
 - 3) Any data value from any networked device shall be available for plotting at a workstation in real time. The operator shall be able to select binary and analog data concurrently and to plot multiple instances of each data type on the same screen. The operator shall be able to select sampling intervals from 1 second to 60 seconds. For devices that implement COV reporting, the operator shall be able to select this as the means to update the plot. It shall be possible to save such real-time plots for subsequent recall.
 - c. Monitoring of Any Property: The operator shall be able to display any value of any property of any object from any networked device including all properties required by BACnet, all supported optional properties, and any proprietary extensions.
 - d. Global Object Definitions: The control system shall be configured with systemwide unique BACnet objects as needed to convey all globally significant information necessary to implement the control strategy.

- e. Setpoint and Parameter Modifications: Operators with appropriate authority shall be able to modify all control loop setpoints and tuning parameters via BACnet messages initiated through operator interaction with graphics displays.
- f. Peer-to-Peer Dependencies: All BACnet devices shall be installed and configured to exchange data values directly, without the need for operator or workstation intervention, to implement the sequence of operations specified in the mechanical system drawings and to share global data values.
- 2. Alarm and Event Management:
 - a. Alarm and Event Management is the exchange of data between BACnet devices related to the occurrence of predefined conditions that meet specific criteria. Such conditions are called "events" and may be the basis for the initiation of a particular control action in response or the simple logging of the event's occurrence. The event may also be deemed to represent a condition that constitutes an "alarm" requiring human acknowledgment and intervention.
 - b. All alarms and events shall be implemented using standard BACnet event detection and notification mechanisms. Either intrinsic reporting or algorithmic change reporting may be used but the intrinsic reporting method is preferred. See BACnet, Clause 13.
 - c. Alarm Lists:
 - 1) The Contractor shall provide devices installed and configured to detect alarms and events for the points indicated in the system drawings. Software logic shall be provided to avoid nuisance alarms, e.g., no temperature or status alarms shall be generated when fan systems are not running or during start-up and shut-down transitions. It shall be possible to configure a delay between the occurrence of an alarm condition and its enunciation.
 - 2) Alarms shall appear at the BAS and any local operator workstation(s) within five seconds of their occurrence. The workstations shall display an alarm message window that appears on top of any other open windows. The alarm message window shall have a distinctive color and appearance to attract the operator's attention. Operators with sufficient privilege shall be able to configure the workstation to emit an audible signal (or not) when an alarm message is received.
 - 3) Alarms that require operator acknowledgement shall cause the alarm window to remain active until such an acknowledgement is received. If multiple alarms are received, unacknowledged alarms shall be displayed on a first come first served basis grouped by priority, with the highest priority alarms displayed first.
 - 4) Alarms shall be distributed using the BACnet notification class mechanism. Assignment of classes and destinations shall be configured according to details provided by the Owner. One destination shall, in all cases, be the BAS.

- 5) BACnet provides a mechanism for prioritizing alarm and event notification messages using a numerical range of 0-255 with 0 being the highest priority and 255 being the lowest priority. Priorities shall be consistent with the safety requirements of UL 864 (applies to fire systems) and UL 1076 (applies to security systems).
- d. Alarm Acknowledgment: Alarms shall be acknowledged through the BAS alarm acknowledgement process.
- e. Alarm Summarization: Alarm summarization shall be handled through the BAS alarm summarization process.
- f. Alarm Parameter Adjustment: Operators with sufficient privilege shall be able to change alarm parameters for all standard BACnet event types.
- g. Alarm Routing Adjustment: Operators with sufficient privilege shall be able to change alarm routing (BACnet notification classes) for each alarm including the destination for each type of alarm and alarm priority, the day of week and time of day, and the type of transition involved (TO-OFFNORMAL, TO-NORMAL, etc.).
- 3. Scheduling: Scheduling is the exchange of data between BACnet devices related to the establishment and maintenance of dates and time at which specified output actions are to be taken. All schedules shall be implemented using BACnet objects and messages.
 - a. Schedule Lists:
 - 1) The Contractor shall provide devices installed and configured with start/stop, mode change, and night setback schedules as defined in the sequence of operations. As part of the installation process, the Contractor shall configure vacation, holiday, and any special event schedules as provided by the Owner.
 - 2) The system shall have the ability to program alterations to programmed operating schedules based on the priority of events and shall include the following scenario:
 - a) Based on operator privileges, the operator shall have the ability to temporarily override the programmed schedule of equipment. Operational override of a programmed schedule shall be for a specific duration following which the schedule shall revert back to the preprogrammed schedule.
 - b. Display of Start and Stop Times and Actions: An operator shall be able to inspect the content of any schedule and determine the specific control actions that will occur at any time, on any date. For any particular device or system parameter that is the subject of a schedule, an operator shall be able to determine the schedule of actions related to that particular device or parameter.
 - c. Modification of Schedules: All calendar entries and schedules shall be modifiable from the BAS or local workstation by an operator with sufficient privilege.

- 4. Trending: Trending is the accumulation of (time, value) data pairs at specified rates for a specified duration. Trends are distinguished from real-time plotting of data by the fact that the data are destined for long-term storage.
 - a. Archival Storage of Data: Archival storage of data will be handled by the BAS. However, the Owner may specify local trend archiving and display through the use of BACnet Trend Log objects.
 - b. Modification of Trend Log Parameters: An operator with sufficient privilege shall be able to change the data points to be logged, the sampling rate, and the duration of a trend log.
- 5. Device and Network Management: Device and network management is the exchange of data between BACnet devices concerning the operation and status of specific devices. If local workstation capabilities are provided, the following functions shall be available:
 - a. Display of Device Status Information: Operators shall be able to display at any time the operational status of any device on the BACnet internetwork.
 - b. Display of BACnet Object Information: Operators shall be able to display, at any time, any property of any BACnet object. Operators shall be able to display property values of objects grouped by object type, object location, and building system.
 - c. Silencing Devices that are Transmitting Erroneous Data: Operators shall be able to direct a field device to stop transmitting event, alarm or COV notifications until a subsequent command to resume transmissions is received.
 - d. Time Synchronization: Operators shall be able to set the time and date in any device on the network that supports time-of-day functionality. The operator shall be able to select to set the time and date for an individual device, or all devices on a single local network.
 - e. Remote Device Reinitialization: Operators shall have the ability to issue reinitialization commands to any device that supports remote reinitialization.
 - f. Backup and Restore: Operators shall have the ability to backup and restore all BACnet devices on the network that support this capability.
 - g. Configuration Management of Half-Routers, Routers and BBMDs: Operators shall have the ability to display and modify the routing table entries in all supplied BACnet half-routers and routers and the broadcast distribution and foreign device registration tables in all BBMDs.
- B. BACnet Objects:
 - 1. The naming convention shall be reviewed and coordinated with the Owner, Commissioning Authority, and Engineer prior to implementation.
 - 2. Device Object Names:

- a. System point names shall be modular in design, allowing easy operator interface without the use of a written point index. The naming convention shall be based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. Names can be up to 254 characters in length, without embedded spaces. Only the characters A-Z, 0-9, ".", and "-" may be used. The goal is the shortest descriptive, but unambiguous, name. For example, if there is only one chilled water pump, "CHW-P1", a valid name would be "FSU.SMITH-HALL.CHW-P1.STATUS".
- b. These names should be used for the value of the "Object Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the BAS name are the same.
- 3. Device Instance Numbers:
 - a. BACnet allows 4194305 device instances per BACnet internetwork, each of which must be unique. Coordinate with the owner, engineer and commissioning agent to develop or expand on a unique naming convention. The following is an example of a naming convention that may be used as a starting point.
 - b. Device Instance = "FFFFNDD" where:

FFFF = Facility Code (see below) N = 0-9 This allows up to 10 networks per facility or building. DD = 00-99 This allows up to 100 devices per network.

- c. Facility codes could be building numbers, address numbers, etc. Note however that four digit numbers above 4193 our out of range; therefore, it may make sense to provide a range of numbers to use as an open "wildcard" range.
- 4. Non-Device Object Names: Objects other than Device objects shall be named in a manner analogous to Device objects.
- 5. Non-Device Instance Numbers: The instance numbers for objects other than Device objects may be assigned at the Contractor's discretion subject only to the constraint that they be unique for a given object type within a given device.
- 6. Issues Relating to Specific BACnet Object Types:
 - a. Analog Input, Output, and Value: All Analog Input, Analog Output, and Analog Value objects shall have the capability of using the Change of Value (COV) reporting mechanism and the COV Increment property shall be writable using BACnet services.
 - b. Binary Input: The Inactive Text and Active Text properties of Binary Input objects shall be configured with text string values as indicated on the points list. Binary Input objects shall support COV reporting.
 - c. Binary Output: The Inactive Text and Active Text properties of Binary Output objects shall be configured with text string values as indicated on the points list.

All Binary Output objects associated with motor on/off status shall track changes of state and runtime. Binary Output objects shall support COV reporting.

- d. Binary Value: The Inactive Text and Active Text properties of Binary Value objects shall be configured with text string values as indicated on the points list. Binary Value objects shall support COV reporting.
- 7. Calendar:
 - a. Devices providing scheduling capability shall also provide at least one Calendar object with a capacity of at least ten entries. Operators shall be able to view the calendar object and make modifications from any BACnet workstation on the network.
 - b. If the Calendar's Date List property is writable using BACnet services, all calendar entry data types shall be supported.
- 8. Loop: All control loops using any combination of proportional, integral, and/or derivative control shall be represented by BACnet Loop objects. Operators with sufficient authority shall be able to adjust at least the Update Interval, Setpoint, Proportional Constant, Integral Constant, and Derivative Constant using BACnet services. Loop objects shall support COV reporting.
- 9. Multi-state Input, Output, and Value: The text to be used for the Multi-state object types shall be determined from the points list. Feedback Value shall be determined by sensing the actual condition or mode of the device. All Multi-state objects shall support COV reporting.
- 10. Schedule: All building systems with date and time scheduling requirements shall have schedules represented by BACnet Schedule objects. All operators shall be able to view the entries for a schedule. Operators with sufficient privilege shall be able to modify schedule entries from any BACnet workstation. Required schedules are shown on the drawings as part of the occupied and unoccupied modes.
- 11. Dynamic Object Creation: BACnet Building Controllers shall be configured to allow the dynamic creation of Trend Log, Calendar, and Schedule objects by means of the BACnet Create Object service. This shall be possible from any supplied BACnet workstation by operators with appropriate authority.
- C. Local Area Networks:
 - 1. These following requirements are specific to the integration of multiple BACnet networks, possibly on different LAN types, into a single BACnet internetwork.
 - 2. Network Numbering:
 - a. The naming convention shall be reviewed and coordinated with the owner, commissioning agent and engineer prior to implementation.
 - b. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is an owner assigned numeric value assigned to a specific

facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internetwork.

c. Network numbers are thus formed as follows: Network Number = "FFFFN" where:

FFFF = Facility Code

N = 0.9 Allows up to 10 networks per facility or building.

N = 0 will generally be assigned to the Building Level Network. Normally, this network is connected to the owner's management level network. The additional N-numbers will be assigned to any MS/TP networks as required.

3. IP Address Assignments: The Contractor shall contact the owner's IT department for assignment of IP addresses prior to beginning device configuration.

3.10 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.
 - 2. Test and adjust controls and safeties.
 - 3. Test calibration of electronic controllers by disconnecting input sensors and simulating operation with compatible signal generator.
 - 4. Test each point through its full operating range to verify that safety and operating control set points are as required.
 - 5. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Simulate and observe each operational mode by overriding and varying inputs and schedules. Adjust PID actions. Use Ziegler-Nichols rules for tuning PID controllers to achieve a 25% maximum overshoot in a step response. Test each system for compliance with sequence of operation.
 - 6. Test software and hardware interlocks.
- C. DDC Verification:
 - 1. Verify that instruments are installed before calibration, testing, and loop or leak checks.
 - 2. Check instruments for proper location and accessibility.
 - 3. Check instrument installation for direction of flow, elevation, orientation, insertion depth, and other applicable considerations.
 - 4. Check instrument tubing for proper fittings, slope, material, and support.
 - 5. Check installation of air supply for each instrument.
 - 6. Check flow instruments. Inspect tag number and line and bore size, and verify that inlet side is identified and that meters are installed correctly.
 - 7. Check pressure instruments, piping slope, installation of valve manifold, and self-contained pressure regulators.
 - 8. Check temperature instruments and material and length of sensing elements.

- 9. Check control valves. Verify that they are in correct direction.
- 10. Check air-operated dampers. Verify that pressure gages are provided and that proper blade alignment, either parallel or opposed, has been provided.
- 11. Check DDC system as follows:
 - a. Verify that DDC controller power supply is from emergency power supply, if applicable.
 - b. Verify that wires at control panels are tagged with their service designation and approved tagging system.
 - c. Verify that spare I/O capacity has been provided.
 - d. Verify that DDC controllers are protected from power supply surges.
- D. Replace damaged or malfunctioning controls and equipment and repeat testing procedures.

3.11 ADJUSTING

- A. Calibrating and Adjusting:
 - 1. Completely adjust or calibrate, ready for use, all thermostats, sensors, transducers, valves, damper operators, relays, etc., provided under this specification.
 - 2. Make three-point calibration test for both linearity and accuracy for each analog instrument.
 - 3. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.
 - 4. Control System Inputs and Outputs:
 - a. Check analog inputs at 0, 50, and 100 percent of span.
 - b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
 - c. Check digital inputs using jumper wire.
 - d. Check digital outputs using ohmmeter to test for contact making or breaking.
 - e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.
 - 5. Flow:
 - a. Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.
 - b. Manually operate flow switches to verify that they make or break contact.
 - 6. Pressure:
 - a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.
 - b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.
 - 7. Temperature:
 - a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.

- b. Calibrate temperature switches to make or break contacts.
- 8. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.
- 9. Stroke and adjust control valves and dampers with positioners, following manufacturer's recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.
- 10. Provide diagnostic and test instruments for calibration and adjustment of system.
- 11. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.
- B. Adjust initial temperature and humidity set points.
- C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.

3.12 COMMISSIONING

- A. Provide at least two persons equipped with two-way communication, including the control technician responsible for system programming during construction, to assist the Engineer for the duration of the commissioning process.
- B. Provide Engineer with full access, including remote login capabilities and temporary administrative privileges, to Building Automation System (BAS) during commissioning process.
 - 1. Provide Engineer with any additional third-party software required for remote login capabilities.
 - 2. The Control Contractor shall be responsible for all costs associated with the Engineer connecting to the Owner's VPN.
- C. Demonstration:
 - 1. Engineer will be present to observe and review system demonstration. Notify Engineer at least 10 days before system demonstration begins.
 - 2. Demonstration shall follow process submitted and approved under under "Action Submittals" of this section.
 - 3. Demonstrate actual field operation of each sequence of operation as specified.
 - 4. Demonstrate calibration and response of any input and output points requested by Engineer. Provide and operate test equipment required to prove proper system operation.
 - 5. Demonstrate compliance with Article "System Performance".
 - 6. Demonstrate compliance with sequences of operation through each operational mode.
 - 7. Demonstrate complete operation of operator interface.
 - 8. Demonstrate each of the following:
 - a. DDC Loop Response: Supply graphical trend data output showing each DDC loop's response to a set point change representing an actuator position change of at least 25% of full range. Trend sampling rate shall be from 10 seconds to 3 minutes, depending on loop speed. Each sample's trend data shall show set point,

actuator position, and controlled variable values. Engineer will require further tuning of each loop that displays unreasonably under- or over-damped control.

- b. Demand Limiting: Supply trend data output showing demand-limiting algorithm action. Trend data shall document action sampled each minute over at least a 30-minute period and shall show building kW, demand-limiting set point, and status of set points and other affected equipment parameters.
- c. Building fire alarm system interface.
- d. Trend logs for each system: Trend data shall indicate set points, operating points, valve positions, and other data as specified in the points list provided with each sequence of operation. Each log shall cover three 48-hour periods and shall have a sample frequency not less than every 10 minutes or as specified on its points lists. Logs shall be accessible through system's operator interface and shall be retrievable for use in other software programs as specified.
- 9. Tests that fail to demonstrate proper system operation shall be repeated after Contractor makes necessary repairs or revisions to hardware or software to successfully complete each test.
- D. Cost of Re-Testing:
 - 1. The cost for the Sub-Contractor to retest a start-up check, calibration, or functional test, if they are responsible for the deficiency, shall be theirs. If they are not responsible, any cost recovery for retesting costs shall be negotiated with the Contractor.
 - 2. For a deficiency identified, not related to any start-up fault, the following shall apply: The Engineer, Contractor and any applicable Sub-Contractors will retest the equipment once at no "charge". However, the time and expenses for the Engineer to direct a second retest shall be charged to the Contractor. The Contractor shall be responsible for any cost recovery for retesting costs from the party responsible.
 - 3. The time and expenses for the Engineer to direct any retesting required because a specific start-up or checkout test item, reported to have been successfully completed, but determined during functional testing to be faulty, shall be charged to the Contractor. The Contractor shall be responsible for any cost recovery for retesting costs from the party responsible for executing the faulty start-up or checkout test item.
- E. Refer to Section 019113 "General Commissioning Requirements" for additional requirements.

3.13 ACCEPTANCE

- A. After tests described in this specification are performed to the satisfaction of both the Engineer and the Owner, Engineer will accept control system as meeting completion requirements. Engineer may exempt tests from completion requirements that cannot be performed due to circumstances beyond Contractor's control. Engineer will provide a written statement of each exempted test. Exempted tests shall be performed as part of the warranty.
- B. Control system shall not be accepted until completed demonstration forms and checklists are submitted and approved. Refer to this section "Submittals."

3.14 DEMONSTRATION

 Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Section 017900 "Demonstration and Training" and Section 230100 "General Provisions for HVAC".

3.15 TRAINING

- A. Engage a factory-trained representative to provide full instruction to designated personnel in the operation and maintenance of the building automation system. Orient the training specifically to the system installed. Instructors shall be thoroughly familiar with the subject matter they are to teach.
- B. Provide a training manual for each student at each training phase that describes in detail the data included in each training program. Provide one additional copy for archiving
- C. Conduct training at the site at a time mutually agreeable between the Owner, Commissioning Authority and Contractor and the contractor prior to final acceptance.
- D. Provide course outline and materials according to Article "Submittals." Provide one copy of training material per student.

END OF SECTION 230900

This Page Left Intentionally Blank
SECTION 230923 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. UTP cabling.
- 2. 50/125-micrometer, multimode optical fiber cabling.
- 3. Low-voltage control cabling.
- 4. Control-circuit conductors.
- 5. Identification products.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. IDC: Insulation displacement connector.
- C. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
- D. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- E. UTP: Unshielded twisted pair.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 50 or less.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 2 - PRODUCTS

2.1 PATHWAYS

- A. Support of Open Cabling: NRTL labeled for support of UTP cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 - 1. Support brackets with cable tie slots for fastening cable ties to brackets.
 - 2. Lacing bars, spools, J-hooks, and D-rings.
 - 3. Straps and other devices.
- B. Conduit and Boxes: Comply with requirements in Section 230928 "Pathways for Control-Voltage Cables."

2.2 UTP CABLE

- A. Description: 100-ohm, four-pair UTP, formed into 25-pair binder groups covered with a white thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-B.2, Category 5e.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Multipurpose: Type MP or Type MPG.
 - b. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 - c. Multipurpose, Riser Rated: Type MPR, complying with UL 1666.UTP CABLE HARDWARE
- B. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.

2.3 OPTICAL FIBER CABLE

A. Description: Multimode, 50/125 -micrometer, 24 -fiber, tight buffer, optical fiber cable.

- 1. Comply with ICEA S-83-596 for mechanical properties.
- 2. Comply with TIA/EIA-568-B.3 for performance specifications.
- 3. Comply with TIA/EIA-492AAAA-B for detailed specifications.
- 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 - a. General Purpose, Nonconductive: Type OFN or OFNG, or Type OFNR or Type OFNP.
 - b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 - c. Riser Rated, Nonconductive: Type OFNR or Type OFNP, complying with UL 1666.
- 5. Maximum Attenuation: 3.5 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
- 6. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.
- B. Jacket:
 - 1. Jacket Color: Aqua for 50/125 -micrometer cable.
 - 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
 - 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).

2.4 OPTICAL FIBER CABLE HARDWARE

A. Cable Connecting Hardware: Comply with the Fiber Optic Connector Intermateability Standards (FOCIS) specifications of TIA/EIA-604-2, TIA/EIA-604-3-A, and TIA/EIA-604-12. Comply with TIA/EIA-568-B.3.

2.5 LOW-VOLTAGE CONTROL CABLE

- A. Paired Cable: NFPA 70, Type CMG.
 - 1. One pair, twisted, No. 18 AWG, stranded (19x30) tinned-copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
 - 1. One pair, twisted, No. 18 AWG, stranded (19x30) tinned-copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Plastic jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.6 CONTROL-CIRCUIT CONDUCTORS

- A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway, complying with UL 83.
- B. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, in raceway power-limited cable, concealed in building finishes, complying with UL 83.
- C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or Type TF, complying with UL 83.

2.7 IDENTIFICATION PRODUCTS

- A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
- B. Comply with requirements in Section 260553 "Identification for Electrical Systems."

PART 3 - EXECUTION

3.1 INSTALLATION OF PATHWAYS

- A. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.
- B. Comply with requirements in Section 230928 "Pathways for Control-Voltage Cables" for installation of conduits and wireways.
- C. Install manufactured conduit sweeps and long-radius elbows if possible.

3.2 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 - 4. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 5. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.

- 6. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- 7. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
- C. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- D. Installation of Control-Circuit Conductors:
 - 1. Install wiring in raceways.
- E. Optical Fiber Cable Installation:
 - 1. Comply with TIA/EIA-568-B.3.
 - 2. Cable shall be terminated on connecting hardware that is rack or cabinet mounted.
- F. Open-Cable Installation:
 - 1. Suspend copper cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 60 inches (1525 mm) apart.
 - 2. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
 - 3. Open-cable installation only allowed in concealed, accessible ceiling spaces and where not otherwise indicated to be in raceway; wiring to be in raceway otherwise.

3.3 CONTROL-CIRCUIT CONDUCTORS

- A. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits, No 14 AWG.
 - 2. Class 2 low-energy, remote-control, and signal circuits, No. 16 AWG.
 - 3. Class 3 low-energy, remote-control, alarm, and signal circuits, No 12 AWG.

3.4 GROUNDING

- A. For data communication wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. For low-voltage wiring and cabling, comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.

- B. Tests and Inspections:
 - 1. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 2. Optical Fiber Cable Tests:
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - b. Link End-to-End Attenuation Tests:
 - 1) Multimode Link Measurements: Test at 850 or 1300 nm in one direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.
 - 2) Attenuation test results for links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.
- C. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- D. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

END OF SECTION 230923

SECTION 230928 - PATHWAYS FOR CONTROL VOLTAGE CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits, tubing, and fittings.
 - 2. Optical-fiber-cable pathways and fittings.
 - 3. Metal wireways and auxiliary gutters.
 - 4. Boxes, enclosures, and cabinets.

1.3 DEFINITIONS

- A. GRC: Galvanized rigid steel conduit.
- B. IMC: Intermediate metal conduit.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

- A. General Requirements for Metal Conduits and Fittings:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with TIA-569-B.
- B. GRC: Comply with ANSI C80.1 and UL 6.
- C. IMC: Comply with ANSI C80.6 and UL 1242.
- D. EMT: Comply with ANSI C80.3 and UL 797.
- E. FMC: Comply with UL 1; zinc-coated steel .
- F. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- G. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.

PATHWAYS FOR CONTROL VOLTAGE CABLES

- 1. Fittings for EMT:
 - a. Material: Steel or die cast.
 - b. Type: Setscrew or compression.
- H. Joint Compound for IMC or GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 OPTICAL-FIBER-CABLE PATHWAYS AND FITTINGS

- A. Description: Comply with UL 2024; flexible-type pathway, approved for plenum riser or general-use installation unless otherwise indicated.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with TIA-569-B.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with TIA-569-B.
- B. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- C. Wireway Covers: Screw-cover type unless otherwise indicated.
- D. Finish: Manufacturer's standard enamel finish.

2.4 BOXES, ENCLOSURES, AND CABINETS

- A. General Requirements for Boxes, Enclosures, and Cabinets:
 - 1. Comply with TIA-569-B.
 - 2. Boxes, enclosures and cabinets installed in wet locations shall be listed for use in wet locations.
- B. Sheet-Metal Device Boxes: Comply with NEMA OS 1 and UL 514A.
- C. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- D. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

PATHWAYS FOR CONTROL VOLTAGE CABLES

- E. Device Box Dimensions: 4 inches by 2-1/8 inches by 2-1/8 inches deep (100 mm by 60 mm by 60 mm deep).
- F. Nonmetallic Device Boxes: Comply with NEMA OS 2 and UL 514C.
- G. Cabinets:
 - 1. NEMA 250, Type 1 , galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.

PART 3 - EXECUTION

3.1 PATHWAY APPLICATION

- A. Outdoors: Apply pathway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC or IMC .
 - 2. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 3. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Indoors: Apply pathway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric-Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 - 4. Pathways for Optical-Fiber or Communications Cable in Spaces Used for Environmental Air: EMT.
 - 5. Pathways for Optical-Fiber or Communications-Cable Risers in Vertical Shafts: EMT.
 - 6. Pathways for Concealed General Purpose Distribution of Optical-Fiber or Communications Cable: EMT.
 - 7. Boxes and Enclosures: NEMA 250, Type 1.
- C. Minimum Pathway Size: 3/4-inch (21-mm)trade size. Minimum size for optical-fiber cables is 1 inch (27 mm).
 - 1. Pathway Fittings: Compatible with pathways and suitable for use and location.
 - 2. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 3. EMT: Use setscrew or compression, steel fittings. Comply with NEMA FB 2.10.
 - 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

3.2 INSTALLATION

- A. Comply with NECA 1, NECA 101, and TIA-569-B for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum pathways. Comply with NFPA 70 limitations for types of pathways allowed in specific occupancies and number of floors.
- B. Keep pathways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal pathway runs above water and steam piping.
- C. Complete pathway installation before starting conductor installation.
- D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- E. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications wiring conduits for which only two 90-degree bends are allowed. Support within 12 inches (300 mm) of changes in direction.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- H. Support conduit within 12 inches (300 mm) of enclosures to which attached.
- I. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of pathway and fittings before making up joints. Follow compound manufacturer's written instructions.
- J. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install insulated bushings on conduits terminated with locknuts.
- K. Install pathways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- L. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to conduit assembly to assure a continuous ground path.
- M. Cut conduit perpendicular to the length. For conduits of 2-inch (53-mm) trade size and larger, use roll cutter or a guide to ensure cut is straight and perpendicular to the length.
- N. Install pull wires in empty pathways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. Cap underground pathways designated as spare above grade alongside pathways in use.
- O. Pathways for Optical-Fiber and Communications Cable: Install pathways as follows:
 - 1. 3/4-Inch (21-mm) Trade Size and Smaller: Install pathways in maximum lengths of 50 feet (15 m).

- 2. 1-Inch (27-mm) Trade Size and Larger: Install pathways in maximum lengths of 75 feet (23 m).
- 3. Install with a maximum of two 90-degree bends or equivalent for each length of pathway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.
- P. Install pathway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed pathways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install pathway sealing fittings according to NFPA 70.
- Q. Install devices to seal pathway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all pathways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where otherwise required by NFPA 70.
- R. Flexible Conduit Connections: Comply with NEMA RV 3. Use maximum of 72 inches (1830 mm) of flexible conduit for equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
- S. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
- T. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surface to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- U. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

3.3 **PROTECTION**

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

END OF SECTION 230928

This Page Left Intentionally Blank

SECTION 231123 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipes, tubes, and fittings.
 - 2. Piping specialties.
 - 3. Piping and tubing joining materials.
 - 4. Valves.
 - 5. Pressure regulators.
 - 6. Concrete bases.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 PERFORMANCE REQUIREMENTS

- A. Minimum Operating-Pressure Ratings:
 - 1. Piping and Valves: 100 psig (690 kPa) minimum unless otherwise indicated.
 - 2. Service Regulators: 100 psig (690 kPa) minimum unless otherwise indicated.
 - 3. Minimum Operating Pressure of Service Meter: 5 psig (34.5 kPa).
- B. Natural-Gas System Pressure within Buildings: 0.5 psig (3.45 kPa) or less.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of the following:

FACILITY NATURAL-GAS PIPING

- 1. Piping specialties.
- 2. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
- 3. Pressure regulators. Indicate pressure ratings and capacities.
- 4. Dielectric fittings.
- B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
 - 1. Shop Drawing Scale: 1/4 inch per foot (1:50).
 - 2. Detail mounting, supports, and valve arrangements for service meter assembly and pressure regulator assembly.

1.6 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pressure regulators and service meters to include in operation and maintenance manuals.

1.8 QUALITY ASSURANCE

- A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.
- B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

FACILITY NATURAL-GAS PIPING

D. Protect stored PE pipes and valves from direct sunlight.

1.10 PROJECT CONDITIONS

- A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.
- B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of natural-gas supply according to requirements indicated:
 - 1. Notify Owner no fewer than five days in advance of proposed interruption of naturalgas service.
 - 2. Do not proceed with interruption of natural-gas service without Owner's written permission.

1.11 COORDINATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided.
- B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Wrought-Steel Welding Fittings: ASTM A 234/A 234M for butt welding and socket welding.
 - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
 - 4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - a. Material Group: 1.1.
 - b. End Connections: Threaded or butt welding to match pipe.
 - c. Lapped Face: Not permitted underground.
 - d. Gasket Materials: ASME B16.20, metallic, flat, asbestos free, aluminum o-rings, and spiral-wound metal gaskets.
 - e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.

- 5. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 - a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.
- B. PE Pipe: ASTM D 2513, SDR 11.
 - 1. PE Fittings: ASTM D 2683, socket-fusion type or ASTM D 3261, butt-fusion type with dimensions matching PE pipe.
 - 2. PE Transition Fittings: Factory-fabricated fittings with PE pipe complying with ASTM D 2513, SDR 11; and steel pipe complying with ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 3. Transition Service-Line Risers: Factory fabricated and leak tested.
 - a. Underground Portion: PE pipe complying with ASTM D 2513, SDR 11 inlet connected to steel pipe complying with ASTM A 53/A 53M, Schedule 40, Type E or S, Grade B, with corrosion-protective coating for aboveground outlet.
 - b. Outlet shall be threaded or flanged or suitable for welded connection.
 - c. Bridging sleeve over mechanical coupling.
 - d. Factory-connected anode.
 - e. Tracer wire connection.
 - f. Ultraviolet shield.
 - g. Stake supports with factory finish to match steel pipe casing or carrier pipe.
 - 4. Plastic Mechanical Couplings, NPS 1-1/2 (DN 40) and Smaller: Capable of joining PE pipe to PE pipe.
 - a. PE body with molded-in, stainless-steel support ring.
 - b. Buna-nitrile seals.
 - c. Acetal collets.
 - d. Electro-zinc-plated steel stiffener.
 - 5. Plastic Mechanical Couplings, NPS 2 (DN 50) and Larger: Capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe.
 - a. Fiber-reinforced plastic body.
 - b. PE body tube.
 - c. Buna-nitrile seals.
 - d. Acetal collets.
 - e. Stainless-steel bolts, nuts, and washers.

2.2 PIPING SPECIALTIES

- A. Appliance Flexible Connectors:
 - 1. Indoor, Fixed-Appliance Flexible Connectors: Comply with ANSI Z21.24.
 - 2. Corrugated stainless-steel tubing with polymer coating.
 - 3. Operating-Pressure Rating: 0.5 psig (3.45 kPa).
 - 4. End Fittings: Zinc-coated steel.
 - 5. Threaded Ends: Comply with ASME B1.20.1.

- 6. Maximum Length: 72 inches (1830 mm.)
- B. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
 - 3. Strainer Screen: [40] [60]-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: 125 psig (862 kPa).

2.3 JOINING MATERIALS

- A. Joint Compound and Tape: Suitable for natural gas.
- B. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 MANUAL GAS SHUTOFF VALVES

- A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
- B. General Requirements for Metallic Valves, NPS 2 (DN 50) and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig (862 kPa).
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch (25 mm) and smaller.
 - 6. Service Mark: Valves 1-1/4 inches (32 mm) to NPS 2 (DN 50) shall have initials "WOG" permanently marked on valve body.
- C. General Requirements for Metallic Valves, NPS 2-1/2 (DN 65) and Larger: Comply with ASME B16.38.
 - 1. CWP Rating: 125 psig (862 kPa).
 - 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
 - 3. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 4. Service Mark: Initials "WOG" shall be permanently marked on valve body.
- D. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim: MSS SP-110.

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following :
 - a. <u>Conbraco Industries, Inc.; Apollo Div</u>.
 - b. Milwaukee Valve Company.
 - c. NIBCO INC.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Body: Bronze, complying with ASTM B 584.
- 3. Ball: Stainless steel.
- 4. Stem: Stainless steel; blowout proof.
- 5. Seats: Reinforced TFE; blowout proof.
- 6. Packing: Threaded-body packnut design with adjustable-stem packing.
- 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 8. CWP Rating: 600 psig (4140 kPa).
- 9. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- E. Cast-Iron, Lubricated Plug Valves: MSS SP-78.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following :
 - a. <u>Flowserve</u>.
 - b. <u>Milliken Valve Company</u>.
 - c. <u>Mueller Co.; Gas Products Div</u>.
 - 2. Body: Cast iron, complying with ASTM A 126, Class B.
 - 3. Plug: Bronze or nickel-plated cast iron.
 - 4. Seat: Coated with thermoplastic.
 - 5. Stem Seal: Compatible with natural gas.
 - 6. Ends: Threaded or flanged as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 7. Operator: Square head or lug type with tamperproof feature where indicated.
 - 8. Pressure Class: 125 psig (862 kPa).
 - 9. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- F. Valve Boxes:
 - 1. Cast-iron, two-section box.
 - 2. Top section with cover with "GAS" lettering.
 - 3. Bottom section with base to fit over valve and barrel a minimum of 5 inches (125 mm) in diameter.
 - 4. Adjustable cast-iron extensions of length required for depth of bury.
 - 5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.5 PRESSURE REGULATORS

- A. General Requirements:
 - 1. Single stage and suitable for natural gas.
 - 2. Steel jacket and corrosion-resistant components.
 - 3. Elevation compensator.
 - 4. End Connections: Threaded for regulators NPS 2 (DN 50) and smaller; flanged for regulators NPS 2-1/2 (DN 65) and larger.
- B. Line Pressure Regulators: Comply with ANSI Z21.80.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - a. <u>Actaris</u>.
 - b. <u>American Meter Company</u>.
 - c. <u>Eclipse Combustion, Inc</u>.
 - d. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 - e. <u>Invensys</u>.
 - f. <u>Maxitrol Company</u>.
 - g. Richards Industries; Jordan Valve Div.
 - 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.
 - 4. Diaphragm Plate: Zinc-plated steel.
 - 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
 - 6. Orifice: Aluminum; interchangeable.
 - 7. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
 - 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
 - 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
 - 10. Overpressure Protection Device: Factory mounted on pressure regulator.
 - 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
 - 12. Maximum Inlet Pressure: 5 psig (34.5 kPa) .
- C. Appliance Pressure Regulators: Comply with ANSI Z21.18.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - a. <u>Canadian Meter Company Inc</u>.
 - b. <u>Eaton Corporation; Controls Div</u>.
 - c. <u>Harper Wyman Co</u>.
 - d. <u>Maxitrol Company</u>.
 - e. <u>SCP, Inc</u>.
 - 2. Body and Diaphragm Case: Die-cast aluminum.

- 3. Springs: Zinc-plated steel; interchangeable.
- 4. Diaphragm Plate: Zinc-plated steel.
- 5. Seat Disc: Nitrile rubber.
- 6. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
- 7. Factory-Applied Finish: Minimum three-layer polyester and polyurethane paint finish.
- 8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.
- 9. Maximum Inlet Pressure: 2 psig (13.8 kPa).

2.6 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 125 psig (860 kPa) minimum at 180 deg F (82 deg C) .
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.7 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches (150 mm) wide and 4 mils (0.1 mm) thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches (750 mm) deep; colored yellow.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
- B. Inspect natural-gas piping according to NFPA 54 to determine that natural-gas utilization devices are turned off in piping section affected.
- C. Comply with NFPA 54 requirements for prevention of accidental ignition.

FACILITY NATURAL-GAS PIPING

3.3 OUTDOOR PIPING INSTALLATION

- A. Comply with NFPA 54 for installation and purging of natural-gas piping.
- B. Install underground, natural-gas piping buried at least 36 inches (900 mm) below finished grade. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.
 - 1. If natural-gas piping is installed less than 36 inches (900 mm) below finished grade, install it in containment conduit.
- C. Install underground, PE, natural-gas piping according to ASTM D 2774.
- D. Install fittings for changes in direction and branch connections.
- E. Install pressure gage upstream and downstream from each service regulator. Pressure gages are specified in Section 230519 "Meters and Gages for HVAC Piping."

3.4 INDOOR PIPING INSTALLATION

- A. Comply with NFPA 54 for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Locate valves for easy access.
- G. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Verify final equipment locations for roughing-in.
- K. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

- L. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches (75 mm) long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- M. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.
- N. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.
 - 1. Prohibited Locations:
 - a. Do not install natural-gas piping in or through circulating air ducts, chimneys or gas vents (flues), ventilating ducts, or elevator shafts.
 - b. Do not install natural-gas piping in solid walls or partitions.
- O. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- P. Connect branch piping from top or side of horizontal piping.
- Q. Install unions in pipes NPS 2 (DN 50) and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.
- R. Do not use natural-gas piping as grounding electrode.
- S. Install strainer on inlet of each line-pressure regulator.
- T. Install pressure gage upstream and downstream from each line regulator. Pressure gages are specified in Section 230519 "Meters and Gages for HVAC Piping."
- U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.5 SERVICE-METER ASSEMBLY INSTALLATION

A. Install service-meter assemblies aboveground, on concrete bases.

FACILITY NATURAL-GAS PIPING

- B. Install metal shutoff valves upstream from service regulators.
- C. Install strainer on inlet of service-pressure regulator and meter set.
- D. Install service regulators mounted outside with vent outlet horizontal or facing down. Install screen in vent outlet if not integral with service regulator.
- E. Install metal shutoff valves upstream from service meters. Install dielectric fittings downstream from service meters.
- F. Install service meters downstream from pressure regulators.
- G. Install metal bollards to protect meter assemblies.

3.6 VALVE INSTALLATION

- A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.
- B. Install underground valves with valve boxes.
- C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.
- D. Install anode for metallic valves in underground PE piping.

3.7 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints:
 - 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 - 2. Cut threads full and clean using sharp dies.
 - 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 - 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 - 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Welded Joints:
 - 1. Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators.
 - 2. Bevel plain ends of steel pipe.
 - 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

- E. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 - 1. Plain-End Pipe and Fittings: Use butt fusion.
 - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

3.8 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1 (DN 25) and Smaller: Maximum span, 96 inches (2438 mm); minimum rod size, 3/8 inch (10 mm).
 - 2. NPS 1-1/4 (DN 32): Maximum span, 108 inches (2743 mm); minimum rod size, 3/8 inch (10 mm).
 - 3. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): Maximum span, 108 inches (2743 mm); minimum rod size, 3/8 inch (10 mm).
 - 4. NPS 2-1/2 to NPS 3-1/2 (DN 65 to DN 90): Maximum span, 10 feet (3 m); minimum rod size, 1/2 inch (13 mm).

3.9 CONNECTIONS

- A. Connect to utility's gas main according to utility's procedures and requirements.
- B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
- C. Install piping adjacent to appliances to allow service and maintenance of appliances.
- D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches (1800 mm) of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
- E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.10 LABELING AND IDENTIFYING

- A. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for piping and valve identification.
- B. Install detectable warning tape directly above gas piping, 12 inches (300 mm) below finished grade, except 6 inches (150 mm) below subgrade under pavements and slabs.

3.11 PAINTING

- A. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Alkyd System: MPI EXT 5.1D.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Topcoat: Exterior alkyd enamel (semigloss).
 - c. Color: Yellow.
- B. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Latex Over Alkyd Primer System: MPI INT 5.1Q.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Topcoat: Interior latex (semigloss).
 - c. Color: Yellow.
- C. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.12 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Test, inspect, and purge natural gas according to NFPA 54 and authorities having jurisdiction.
- C. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.13 OUTDOOR PIPING SCHEDULE

- A. Underground natural-gas piping shall be the following:
 - 1. PE pipe and fittings joined by heat fusion, or mechanical couplings; service-line risers with tracer wire terminated in an accessible location.
- B. Aboveground natural-gas piping shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.

- C. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
- 3.14 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG (3.45 kPa)
 - A. Aboveground, branch piping NPS 1 (DN 25) and smaller shall be the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - B. Aboveground, distribution piping shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.
 - C. Underground, below building, piping shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.
 - D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
 - E. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.15 UNDERGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Connections to Existing Gas Piping: Use valve and fitting assemblies made for tapping utility's gas mains and listed by an NRTL.
- B. Underground:
 - 1. NPS 2 (DN 50) and Smaller: Bronze plug valves.
 - 2. NPS 2-1/2 (DN 65) and Larger: Cast-iron, lubricated plug valves.

3.16 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Valves for pipe sizes NPS 2 (DN 50) and smaller at service meter shall be the following:
 - 1. Two-piece, full -port, bronze ball valves with stainless steel trim.
- B. Valves for pipe sizes NPS 2-1/2 (DN 65) and larger at service meter shall be one of the following:
 - 1. Two-piece, full -port, bronze ball valves with stainless steel trim.
 - 2. Cast-iron, lubricated plug valve.

- C. Distribution piping valves for pipe sizes NPS 2 (DN 50) and smaller shall be the following:
 - 1. Two-piece, full -port, bronze ball valves with stainless steel trim.
- D. Distribution piping valves for pipe sizes NPS 2-1/2 (DN 65) and larger shall be one of the following:
 - 1. Two-piece, full -port, bronze ball valves with stainless steel trim.
 - 2. Cast-iron, lubricated plug valve.
- E. Valves in branch piping for single appliance shall be the following:
 - 1. Two-piece, full -port, bronze ball valves with stainless steel trim.

END OF SECTION 231123

This Page Left Intentionally Blank

SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:
 - 1. Hot-water heating piping.
 - 2. Chilled-water piping.
 - 3. Makeup-water piping.
 - 4. Condensate-drain piping.
 - 5. Blowdown-drain piping.
 - 6. Air-vent piping.
 - 7. Safety-valve-inlet and -outlet piping.
- B. Related Sections include the following:
 - 1. Section 232123 "Hydronic Pumps" for pumps, motors, and accessories for hydronic piping.

1.3 DEFINITIONS

A. PTFE: Polytetrafluoroethylene.

1.4 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:
 - 1. Hot-Water Heating Piping: 150 psig (1034 kPa) at 200 deg F (93 deg C).
 - 2. Chilled-Water Piping: 150 psig (1034 kPa) at 200 deg F (93 deg C).
 - 3. Makeup-Water Piping: 125 psig (862 kPa) at 150 deg F (66 deg C).
 - 4. Condensate-Drain Piping: 150 deg F (66 deg C).
 - 5. Blowdown-Drain Piping: 200 deg F (93 deg C).
 - 6. Air-Vent Piping: 200 deg F (93 deg C).
 - 7. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 - 2. Air control devices.
 - 3. Chemical treatment.
 - 4. Hydronic specialties.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Welding certificates.
- C. Field quality-control test reports.
- D. Water Analysis: Submit a copy of the water analysis to illustrate water quality available at Project site.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Water-Treatment Chemicals: Furnish enough chemicals for initial system startup and for preventive maintenance for one year from date of Substantial Completion.
- B. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

1.9 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME

label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Drawn-Temper Copper Tubing: ASTM B 88, Type L (ASTM B 88M, Type B).
- B. Annealed-Temper Copper Tubing: ASTM B 88, Type K (ASTM B 88M, Type A).
- C. DWV Copper Tubing: ASTM B 306, Type DWV.
- D. Wrought-Copper Fittings: ASME B16.22.
- E. Wrought-Copper Unions: ASME B16.22.

2.2 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.
- B. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300 as indicated in Part 3 "Piping Applications" Article.
- C. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in Part 3 "Piping Applications" Article.
- D. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.
- E. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
- F. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.
- G. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

2.3 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

- 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- F. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.4 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 125 psig (860 kPa) minimum at 180 deg F (82 deg C).
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric-Flange Insulating Kits:
 - 1. Description:
 - a. Nonconducting materials for field assembly of companion flanges.
 - b. Pressure Rating: 150 psig (1035 kPa).
 - c. Gasket: Neoprene or phenolic.
 - d. Bolt Sleeves: Phenolic or polyethylene.
 - e. Washers: Phenolic with steel backing washers.

2.5 VALVES

- A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Section 230523 "General-Duty Valves for HVAC Piping."
- B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Section 230900 "Instrumentation and Control for HVAC."

- C. Bronze, Calibrated-Orifice, Balancing Valves:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide NIBCO; INC.; 1710 or a comparable product by one of the following:
 - a. <u>Flow Design Inc</u>.
 - b. <u>Griswold Controls</u>.
 - c. <u>Taco</u>.
 - 2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
 - 3. Ball: Brass or stainless steel.
 - 4. Plug: Resin.
 - 5. Seat: PTFE.
 - 6. End Connections: Threaded or socket.
 - 7. Pressure Gage Connections: Integral seals for portable differential pressure meter.
 - 8. Handle Style: Lever, with memory stop to retain set position.
 - 9. CWP Rating: Minimum 125 psig (860 kPa).
 - 10. Maximum Operating Temperature: 250 deg F (121 deg C).
- D. Cast-Iron, Calibrated-Orifice, Balancing Valves:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide NIBCO, INC; F737A or a comparable product by one of the following:
 - a. Watts; CSM-81-F.
 - b. Wheatley; PSV
 - 2. Body: Cast-iron, plug, or globe pattern with calibrated orifice or venturi.
 - 3. Plug Seal: Isobutene-Isoprene
 - 4. Bearings: Stainless Steel
 - 5. Packing: Buna
 - 6. Disc: EPDM coated cast-iron.
 - 7. End Connections: Flanged or grooved.
 - 8. Pressure Gage Connections: Integral seals for portable differential pressure meter.
 - 9. Handle Style: Non-rising stem hand wheel or square nut, with memory stop to retain set position.
 - 10. CWP Rating: Minimum 125 psig (860 kPa).
 - 11. Maximum Operating Temperature: 250 deg F (121 deg C).
- E. Diaphragm-Operated, Pressure-Reducing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Amtrol, Inc</u>.
 - b. <u>Armstrong Pumps, Inc</u>.
 - c. <u>Conbraco Industries, Inc</u>.
 - d. <u>Watts Regulator Co.; a division of Watts Water Technologies, Inc.</u>
 - 2. Body: Bronze or brass.
 - 3. Disc: Glass and carbon-filled PTFE.

- 4. Seat: Brass.
- 5. Stem Seals: EPDM O-rings.
- 6. Diaphragm: EPT.
- 7. Low inlet-pressure check valve.
- 8. Inlet Strainer: Stainless steel, removable without system shutdown.
- 9. Valve Seat and Stem: Noncorrosive.
- 10. Valve Size, Capacity, and Operating Pressure: Selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.
- F. Diaphragm-Operated Safety Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Amtrol, Inc</u>.
 - b. <u>Conbraco Industries, Inc</u>.
 - c. <u>Watts Regulator Co.; a division of Watts Water Technologies, Inc.</u>
 - 2. Body: Bronze or brass.
 - 3. Disc: Glass and carbon-filled PTFE.
 - 4. Seat: Brass.
 - 5. Stem Seals: EPDM O-rings.
 - 6. Diaphragm: EPT.
 - 7. Wetted, Internal Work Parts: Brass and rubber.
 - 8. Inlet Strainer: **<Stainless steel**>, removable without system shutdown.
 - 9. Valve Seat and Stem: Noncorrosive.
 - 10. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.
- G. Automatic Flow-Control Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Flow Design Inc</u>.
 - b. <u>Griswold Controls</u>.
 - 2. Body: Brass or ferrous metal.
 - 3. Piston and Spring Assembly: Stainless steel, tamper proof, self cleaning, and removable.
 - 4. Dual pressure/temperature test plugs across flow control cartridge.
 - 5. Combination Assemblies: Include bonze ball valve.
 - 6. Identification Tag: Marked with zone identification, valve number, and flow rate.
 - 7. Size: Same as pipe in which installed.
 - 8. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
 - 9. Minimum CWP Rating: 175 psig (1207 kPa).
 - 10. Maximum Operating Temperature: 250 deg F (121 deg C).
- H. Combination Strainer / Isolation Ball Valve:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flow <u>Design</u> Inc.
 - b. <u>Griswold</u> Controls.
- 2. Body: Forged or cast brass.
- 3. Connections: Threaded with union inlet.
- 4. Combination Assemblies: Include bronze ball valve, union and strainer.
- 5. Strainer: 20 mesh stainless steel; provide drain valve with hose bibb adaptor and cap on strainer port. Provide a pressure/temperature test plug at the strainer inlet and outlet.
- 6. Valve: Nickel-plated brass ball with EPDM O-rings behind the seals.
- 7. Size: NPS 2" and smaller.
- 8. Minimum CWP Rating: 275 psig.
- 9. Maximum Operating Temperature: 250 deg F.
- I. Combination Union / Isolation Ball Valve:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flow Design Inc.
 - b. <u>Griswold</u> Controls.
 - 2. Body: Forged or cast brass.
 - 3. Connections: Threaded with union inlet.
 - 4. Combination Assemblies: Include bronze ball valve and union.
 - 5. Union: Provide union with four ¹/₄" body tappings with brass end connections. Union seal shall be EPDM O-rings. Provide an automatic air vent in the top tapping and a pressure/temperature test plug.
 - 6. Valve: Nickel-plated brass ball with EPDM O-rings behind the seals.
 - 7. Size: NPS 2" and smaller.
 - 8. Minimum CWP Rating: 275 psig.
 - 9. Maximum Operating Temperature: 250 deg F.
- J. Isolation Union:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flow Design Inc.
 - b. <u>Griswold</u> Controls.
 - 2. Body: Forged or cast brass.
 - 3. Connections: Threaded.
 - 4. Union: Provide union with four ¹/₄" body tappings with brass end connections. Union seal shall be EPDM O-rings. Provide a pressure/temperature test plug.
 - 5. Size: NPS 2" and smaller.
 - 6. Minimum CWP Rating: 275 psig.
 - 7. Maximum Operating Temperature: 250 deg F.

2.6 HYDRONIC COIL PACKAGES

- A. Provide the following arrangements for individual coil connections 2" NPS and smaller where indicated on the drawings.
 - 1. Supply Side: Provide Combination Strainer / Isolation Ball Valve.
 - 2. Return Side:
 - a. <u>Modulating Control (Two Way): Provide combination union / isolation ball valve</u> on leaving side of control valve and isolation union on inlet side of control valve. Provide pressure independent control valve specified in section 230900.
 - b. <u>Modulating Control (Three Way)</u>: <u>Provide combination automatic fow control</u> valve / isolation ball valve on leaving side of control valve. Provide control valve <u>specified</u> in section 230900.
- B. Provide hose kits complete with flame retardant hose.

2.7 AIR CONTROL DEVICES

- A. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Amtrol, Inc</u>.
 - 2. <u>Bell & Gossett Domestic Pump; a division of ITT Industries</u>.
 - 3. <u>Taco</u>.
- B. Manual Air Vents:
 - 1. Body: Bronze.
 - 2. Internal Parts: Nonferrous.
 - 3. Operator: Screwdriver or thumbscrew.
 - 4. Inlet Connection: NPS 1/2 (DN 15).
 - 5. Discharge Connection: NPS 1/8 (DN 6).
 - 6. CWP Rating: 150 psig (1035 kPa).
 - 7. Maximum Operating Temperature: 225 deg F (107 deg C).
- C. Automatic Air Vents:
 - 1. Body: Bronze or cast iron.
 - 2. Internal Parts: Nonferrous.
 - 3. Operator: Noncorrosive metal float.
 - 4. Inlet Connection: NPS 1/2 (DN 15).
 - 5. Discharge Connection: NPS 1/4 (DN 8).
 - 6. CWP Rating: 150 psig (1035 kPa).
 - 7. Maximum Operating Temperature: 240 deg F (116 deg C).
- D. Bladder-Type Expansion Tanks:
- 1. Tank: Welded steel, rated for 125-psig (860-kPa) working pressure and 375 deg F (191 deg C) maximum operating temperature. Factory test with taps fabricated and supports installed and labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- 2. Bladder: Securely sealed into tank to separate air charge from system water to maintain required expansion capacity.
- 3. Air-Charge Fittings: Schrader valve, stainless steel with EPDM seats.
- E. Air and Dirt Separators:
 - 1. Tank: Welded steel; ASME constructed and labeled for 125-psig (860-kPa) minimum working pressure and 375 deg F (191 deg C) maximum operating temperature.
 - 2. Air/Dirt Separator Medium: High surface pall rings, constructed to provide separation of air to 20 microns and dirt to 100 microns within 100 passes
 - 3. Inlet and Outlet Connections: Threaded for NPS 2 (DN 50) and smaller; flanged connections for NPS 2-1/2 (DN 65) and larger.
 - 1. Blowdown: Threaded connection with ball valve.
 - 4. Flushing: Provide flushing port with ball valve on side of seperator.
 - 5. Size: Match system flow capacity.

2.8 CHEMICAL TREATMENT

- A. Bypass Chemical Feeder: Welded steel construction; 125-psig (860-kPa) working pressure; 5-gal. (19-L) capacity; with fill funnel and inlet, outlet, and drain valves.
 - 1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.

2.9 HYDRONIC PIPING SPECIALTIES

- A. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
 - 3. Strainer Screen: 40 -mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: 125 psig (860 kPa).
- B. Expansion fittings are specified in Section 230516 "Expansion Fittings and Loops for HVAC Piping."
- C. Reduced-Pressure-Principle Backflow Preventers :
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Watts; LF909 or comparable product by one of the following:
 - a. <u>Ames Fire & Waterworks; a division of Watts Water Technologies, Inc.</u>
 - b. FEBCO; a division of Watts Water Technologies, Inc.

- c. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.
- 2. Standard: ASSE 1013.
- 3. Operation: Continuous-pressure applications.
- 4. Pressure Loss: 12 psig (83 kPa) maximum, through middle third of flow range.
- 5. Body: Bronze.
- 6. End Connections: Threaded.
- 7. Configuration: Designed for horizontal, straight-through flow.
- 8. Accessories:
 - a. Valves NPS 2 (DN 50) and Smaller: Ball type with threaded ends on inlet and outlet.
 - b. Air-Gap Fitting: ASME A112.1.2, matching backflow-preventer connection.
- D. Displacement-Type Water Meters:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - a. ABB.
 - b. Badger Meter, Inc.
 - c. Mueller Co. Ltd.; a subsidiary of Mueller Water Products Inc.
 - 2. Description:
 - a. Standard: AWWA C700.
 - b. Pressure Rating: 150-psig (1035-kPa) working pressure.
 - c. Body Design: Nutating disc; totalization meter.
 - d. Registration: In gallons (liters) or cubic feet (cubic meters) as required by utility company.
 - e. Case: Bronze.
 - f. End Connections: Threaded.
- E. Water Regulators :
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Watts; LF223S or LFN223BS or comparable product by one of the following:
 - a. <u>Conbraco Industries, Inc</u>.
 - b. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.
 - 2. Standard: ASSE 1003.
 - 3. Pressure Rating: Initial working pressure of 150 psig (1035 kPa).
 - 4. Body: Bronze.
 - 5. End Connections: Threaded.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Hot-water heating piping, aboveground, NPS 2 (DN 50) and smaller, shall be any of the following:
 - 1. Schedule 40 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
- B. Hot-water heating piping, aboveground, NPS 2-1/2 (DN 65) and larger, shall be any of the following:
 - 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- C. Chilled-water piping, aboveground, NPS 2 (DN 50) and smaller, shall be any of the following:
 - 1. Schedule 40 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
- D. Chilled-water piping, aboveground, NPS 2-1/2 (DN 65) and larger, shall be any of the following:
 - 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- E. Makeup-water piping installed aboveground shall be the following:
 - 1. Type L (B), drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- F. Condensate-Drain Piping: Type M (C), drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- G. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.
- H. Air-Vent Piping:
 - 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.
 - 2. Outlet: Type K (A), annealed-temper copper tubing with soldered or flared joints.
- I. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.

3.2 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.
- B. Install calibrated-orifice, balancing valves at each branch connection to return main.
- C. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.
 - 1. Balancing valve may be omitted where flow control valve or pressure independent control valve is provided.
- D. Install check valves at each pump discharge and elsewhere as required to control flow direction.
- E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; and pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.
- F. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.3 PIPING INSTALLATIONS

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Select system components with pressure rating equal to or greater than system operating pressure.

- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- L. Install drains, consisting of a tee fitting, NPS 3/4 (DN 20) ball valve, and short NPS 3/4 (DN 20) threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- O. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- P. Install valves according to Section 230523 "General-Duty Valves for HVAC Piping."
- Q. Install unions in piping, NPS 2 (DN 50) and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- R. Install flanges in piping, NPS 2-1/2 (DN 65) and larger, at final connections of equipment and elsewhere as indicated.
- S. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, inline pump, and elsewhere as indicated. Install NPS 3/4 (DN 20) nipple and ball valve in blowdown connection of strainers NPS 2 (DN 50) and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2 (DN 50).
- T. Install expansion loops, expansion joints, anchors, and pipe alignment guides as specified in Section 230516 "Expansion Fittings and Loops for HVAC Piping."
- U. Identify piping as specified in Section 230553 "Identification for HVAC Piping and Equipment."
- V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.4 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor devices are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.
- B. Install the following pipe attachments:

- 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet (6 m) long.
- 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet (6 m) or longer.
- 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
- 4. Spring hangers to support vertical runs.
- 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4 (DN 20): Maximum span, 7 feet (2.1 m); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 1 (DN 25): Maximum span, 7 feet (2.1 m); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1-1/2 (DN 40): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
 - 4. NPS 2 (DN 50): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).
 - 5. NPS 2-1/2 (DN 65): Maximum span, 11 feet (3.4 m); minimum rod size, 3/8 inch (10 mm).
 - 6. NPS 3 (DN 80): Maximum span, 12 feet (3.7 m); minimum rod size, 3/8 inch (10 mm).
 - 7. NPS 4 (DN 100): Maximum span, 14 feet (4.3 m); minimum rod size, 1/2 inch (13 mm).
 - 8. NPS 6 (DN 150): Maximum span, 17 feet (5.2 m); minimum rod size, 1/2 inch (13 mm).
- D. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4 (DN 20): Maximum span, 5 feet (1.5 m); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 1 (DN 25): Maximum span, 6 feet (1.8 m); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1-1/2 (DN 40): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
 - 4. NPS 2 (DN 50): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
 - 5. NPS 2-1/2 (DN 65): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
 - 6. NPS 3 (DN 80): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).
- E. Support vertical runs at roof, at each floor, and at 10-foot (3-m) intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

- D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- E. Welded Joints: Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.6 HYDRONIC SPECIALTIES INSTALLATION

- A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Manual vents at heat-transfer coils and elsewhere as required for air venting.
- C. Install air and dirt separator in pump suction. Install blowdown piping with full-port ball valve; extend full size to nearest floor drain.
- D. Install bypass chemical feeders in each hydronic system where indicated, in upright position with top of funnel not more than 48 inches (1200 mm) above the floor. Install feeder in minimum NPS 3/4 (DN 20) bypass line, from main with full-size, full-port, ball valve in the main between bypass connections. Install NPS 3/4 (DN 20) pipe from chemical feeder drain, to nearest equipment drain and include a full-size, full-port, ball valve.
- E. Install expansion tanks on the floor. Vent and purge air from hydronic system, and ensure tank is properly charged with air to suit system Project requirements.
- F. Install backflow preventers in each makeup-water supply to mechanical equipment and systems. Comply with authorities having jurisdiction.
 - 1. Locate backflow preventers in same room as connected equipment or system.
 - 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
 - 3. Do not install bypass piping around backflow preventers.
- G. Install water meter in each makeup-water supply to mechanical equipment and systems.
- H. Install water regulators with inlet and outlet shutoff valves and bypass with memory-stop balancing valve. Install pressure gages on inlet and outlet.

3.7 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.
- C. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Section 230519 "Meters and Gages for HVAC Piping."

3.8 CHEMICAL TREATMENT

- A. Perform an analysis of makeup water to determine type and quantities of chemical treatment needed to keep system free of scale, corrosion, and fouling.
- B. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products from piping. Circulate solution for a minimum of 24 hours, drain, clean strainer screens, and refill with fresh water.
- C. Add initial chemical treatment and maintain water quality in ranges noted above for the first year of operation.

3.9 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
- B. Perform the following tests on hydronic piping:
 - 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 - 3. Isolate expansion tanks and determine that hydronic system is full of water.
 - 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum

yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."

- 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
- 6. Prepare written report of testing.
- C. Perform the following before operating the system:
 - 1. Open manual valves fully.
 - 2. Inspect pumps for proper rotation.
 - 3. Set makeup pressure-reducing valves for required system pressure.
 - 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
 - 5. Set temperature controls so all coils are calling for full flow.
 - 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
 - 7. Verify lubrication of motors and bearings.

END OF SECTION 232113

This Page Left Intentionally Blank

SECTION 232113.13 - UNDERGROUND HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Steel pipes and fittings.
 - 2. Cased piping system.

1.3 PERFORMANCE REQUIREMENTS

- A. Provide components and installation capable of producing hydronic piping systems with the following minimum working-pressure ratings:
 - 1. Hot-Water Piping: 150 psig (1035 kPa) at 200 deg F (93 deg C).
 - 2. Chilled-Water Piping: 150 psig (1035 kPa) at 200 deg F (93 deg C).

1.4 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Cased piping.
- B. Shop Drawings: For underground hydronic piping. Signed and sealed by a professional engineer.
 - 1. Calculate requirements for expansion compensation for underground piping.
 - 2. Show expansion compensators, offsets, and loops with appropriate materials to allow piping movement in the required locations. Show anchors and guides that restrain piping movement with calculated loads, and show concrete thrust block dimensions.
 - 3. Show pipe sizes, locations, and elevations. Show piping in trench, conduit, and cased pipe with details showing clearances between piping, and show insulation thickness.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Welding certificates.

UNDERGROUND HYDRONIC PIPING

C. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Comply with provisions in ASME B31.9, "Building Services Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- B. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation.

PART 2 - PRODUCTS

2.1 STEEL PIPES AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black with plain ends; type, grade, and wall thickness as indicated in "Piping Application" Article.
- B. Malleable-Iron, Threaded Fittings: ASME B16.3, Class 150 .
- C. Malleable-Iron Unions: ASME B16.39; Class 150 .
- D. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Class 125 ; raised ground face, and bolt holes spot faced.
- E. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
- F. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.
- G. Steel Welding Fittings: ASME B16.9, seamless or welded.
 - 1. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- H. Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.
- I. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

- 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and -bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- J. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

2.2 CASED PIPING SYSTEM

- A. Description: Factory-fabricated piping with carrier pipe, insulation, and casing.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following :
 - a. <u>Thermacor Process, L.P</u>.
- B. Carrier Pipe: Schedule 40, steel pipe and fittings .
- C. Carrier Pipe Insulation:
 - 1. Polyurethane Foam Pipe Insulation: Rigid, cellular, high-pressure injected between carrier pipe and jacket.
 - a. Comply with ASTM C 591; thermal conductivity (k-value) shall not exceed 0.14 Btu x in./h x sq. ft. x deg F (0.020 W/m x K) at 75 deg F (24 deg C) after 180 days of aging.
- D. Casing: HDPE.
- E. Casing accessories include the following:
 - 1. Joint Kit & Fittings: Straight run joints shall be field-insulated per the manufacturer's instructions, using polyurethane foam poured in an HDPE sleeve and sealed with a heat shrink sleeve. Provide factory prefabricated and pre-insulated fittings with polyurethane foam to the thickness specified and jacketed with a one piece seamless molded HDPE fitting cover. Provide factory prefabricated and pre-insulated fittings with polyurethane foam to the thickness specified and jacketed with a one piece seamless molded HDPE fitting cover.
 - 2. End Seals: Terminations inside of manholes or interior below grade walls shall have a corrosion coated steel sleeve protecting the foam. This steel sleeve shall be fillet welded onto the carrier pipe and come up and extend back on the jacket a distance of 18". A high temperature shrink sleeve 4" wide shall be used to seal the steel sleeve to the HDPE jacket. Moisture barrier end seals shall be factory applied to any exposed foam at the end of a pipe length, including the foam that is also protected by the steel sleeve at manhole terminations. End seals shall be high temperature mastic completely sealing the exposed end of the insulation. End seals shall be certified as having passed a 20-foot head pressure test. If any field cutting of the pipe is required, field applied end seals shall be installed to the piping before continuing with the installation.

3. Leak Detection: Provide prefabricated bare copper leak detection wire supported on pipe centering devices through out length of pipe. Wire shall extend out each end of pipe section.

PART 3 - EXECUTION

3.1 EARTHWORK

A. See Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATION

- A. Hot-Water Heating Piping:
 - 1. NPS 2 (DN 50) and smaller shall be the following:
 - a. Schedule 40 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
 - 2. NPS 2-1/2 (DN 65) and larger shall be the following:
 - a. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
 - 3. Cased piping with polyurethane carrier-pipe insulation.
 - a. Piping Insulation Thickness: 2 inches (50 mm).

B. Chilled-Water Piping:

- 1. NPS 2 (DN 50) and smaller shall be the following:
 - a. Schedule 40 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
- 2. NPS 2-1/2 (DN 65) and larger shall be the following:
 - a. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- 3. Cased piping with polyurethane carrier-pipe insulation.
 - a. Piping Insulation Thickness: 2 inches (50 mm).

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and

calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

- B. Expansion/contraction compensation will be accomplished utilizing factory prefabricated and pre-insulated expansion elbows, Z-bends, expansion loops and anchors specifically designed for the intended application. External expansion compensation utilizing flexible expansion pads (minimum one inch thickness), extending on either side, both inside and outside the radius of the fittings are used with all fittings having expansion in excess of 1/2".
- C. Remove standing water in the bottom of trench. Bed the pipe on a minimum 6-inch layer of granular fill material with a minimum 6-inch clearance between the pipes.
- D. Do not backfill piping trench until field quality-control testing has been completed and results approved.
- E. Install piping at uniform grade of 0.2 percent. Install drains, consisting of a tee fitting, NPS 3/4 (DN 20) ball valve, and short NPS 3/4 (DN 20) threaded nipple with cap, at low points and elsewhere as required for system drainage. Install manual air vents at high points.
- F. Install components with pressure rating equal to or greater than system operating pressure.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. See Section 230517 "Sleeves and Sleeve Seals for HVAC Piping" for sleeves and mechanical sleeve seals through exterior building walls.
- J. Secure anchors with concrete thrust blocks. Concrete is specified in Section 033000 "Cast-in-Place Concrete."

3.4 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.

E. Cased Piping Joints: Assemble sections and finish joints with pourable or split insulation and exterior jacket sleeve, and apply shrink-wrap seals as required by manufacturer's written installation instructions. The joint shall be pressure tested at 5 psi for 5 minutes while simultaneously soap testing at the joint closure's seams for possible leaks. After passing the pressure test, a closure patch shall be welded (as per specified joint closure instructions) over the test hole. All joint closures and insulation shall occur at straight sections of pipe. Splice leak detection wire across all fittings to provide continuous length between manholes. Terminate in gang box at each manhole.

3.5 IDENTIFICATION

A. Install continuous plastic underground warning tapes during back filling of trenches for underground hydronic piping. Locate tapes 6 to 8 inches (150 to 200 mm) below finished grade, directly over piping. See Section 312000 "Earth Moving" for warning-tape materials and devices and their installation.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing. The technician will be available at the job a minimum of three times to check unloading, storing and handling of pipe, pipe installation, pressure-testing, field joint insulation and backfilling techniques. This service will be costed as part of the project technical services required by the pre-insulated pipe manufacturer. Prepare a written report of testing.
- B. Tests and Inspections:
 - 1. Prepare hydronic piping for testing according to ASME B31.9 and as follows:
 - a. Leave joints, including welds, uninsulated and exposed for examination during test.
 - b. Fill system with water. Where there is risk of freezing, air or a safe, compatible liquid may be used.
 - c. Use vents installed at high points to release trapped air while filling system.
 - 2. Test hydronic piping as follows:
 - a. Subject hydronic piping to hydrostatic test pressure that is not less than 1.5 times the design pressure.
 - b. After hydrostatic test pressure has been applied for 10 minutes, examine joints for leakage. Remake leaking joints using new materials and repeat hydrostatic test until no leaks exist.
- C. Prepare test and inspection reports.

END OF SECTION 232113.13

This Page Left Intentionally Blank

SECTION 232123 - HYDRONIC PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Close-coupled, in-line centrifugal pumps.
 - 2. Close-coupled, end-suction centrifugal pumps.

1.3 DEFINITIONS

- A.
- B. EPT: Ethylene propylene terpolymer.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of pump. Include certified performance curves and rated capacities, operating characteristics, furnished specialties, final impeller dimensions, and accessories for each type of product indicated. Indicate pump's operating point on curves.
- B. Shop Drawings: For each pump.
 - 1. Show pump layout and connections.
 - 2. Include setting drawings with templates for installing foundation and anchor bolts and other anchorages.
 - 3. Include diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pumps to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Mechanical Seals: One mechanical seal(s) for each pump.

PART 2 - PRODUCTS

2.1 CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. <u>Armstrong Pumps Inc</u>.
 - 2. <u>ITT Corporation; Bell & Gossett</u>.
 - 3. <u>TACO Incorporated</u>.
- B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, close-coupled, inline pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted horizontally or vertically.
- C. Pump Construction:
 - 1. Casing: Radially split, cast iron, with threaded gage tappings at inlet and outlet, replaceable bronze wear rings, and threaded companion-flange connections.
 - 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. For constant-speed pumps, trim impeller to match specified performance.
 - 3. Pump Shaft: Steel, with copper-alloy shaft sleeve .
 - 4. Seal: Mechanical seal consisting of carbon rotating ring against a ceramic seat held by a stainless-steel spring, and EPT bellows and gasket. Include water slinger on shaft between motor and seal.
 - 5. Pump Bearings: Oil lubricated; bronze-journal or thrust type.
- D. Motor: Single speed and rigidly mounted to pump casing.
 - 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - a. Enclosure: Open, dripproof.
 - b. Enclosure Materials: Cast iron.
 - c. Motor Bearings: Grease-lubricated ball bearings.

2.2 CLOSE-COUPLED, END-SUCTION CENTRIFUGAL PUMPS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. <u>Armstrong Pumps Inc</u>.

- 2. <u>ITT Corporation; Bell & Gossett</u>.
- 3. <u>TACO Incorporated</u>.
- B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, close-coupled, end-suction pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted horizontally.
- C. Pump Construction:
 - 1. Casing: Radially split, cast iron, with replaceable bronze wear rings, drain plug at bottom and air vent at top of volute, threaded gage tappings at inlet and outlet, and flanged connections.
 - 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. For constant-speed pumps, trim impeller to match specified performance.
 - 3. Pump Shaft: Steel, with copper-alloy shaft sleeve .
 - 4. Mechanical Seal: Carbon rotating ring against a ceramic seat held by a stainless-steel spring, and EPT bellows and gasket. Include water slinger on shaft between motor and seal.
 - 5. Pump Bearings: Oil lubricated; bronze-journal or thrust type.
- D. Motor: Single speed and rigidly mounted to pump casing with integral pump support.
 - 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - a. Enclosure: Open, dripproof.
 - b. Enclosure Materials: Cast iron.
 - c. Motor Bearings: Grease-lubricated ball bearings.

2.3 PUMP SPECIALTY FITTINGS

- A. Suction Diffuser:
 - 1. Angle pattern.
 - 2. 175-psig (1204-kPa) pressure rating, cast -iron body and end cap, pump-inlet fitting.
 - 3. Bronze startup and bronze or stainless-steel permanent strainers.
 - 4. Bronze or stainless-steel straightening vanes.
 - 5. Drain plug.
 - 6. Factory-fabricated support.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine equipment foundations and anchor-bolt locations for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for piping systems to verify actual locations of piping connections before pump installation.
- C. Examine foundations for suitable conditions where pumps are to be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PUMP INSTALLATION

- A. Comply with HI 1.4.
- B. Install pumps to provide access for periodic maintenance including removing motors, impellers, couplings, and accessories.
- C. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.
- D. Equipment Mounting: Install base-mounted pumps using elastomeric pads. Comply with requirements for vibration isolation devices specified in Section 230548 "Vibration Controls for HVAC Piping and Equipment."
 - 1. Minimum Deflection: 1/4 inch (6 mm).

3.3 CONNECTIONS

- A. Where installing piping adjacent to pump, allow space for service and maintenance.
- B. Connect piping to pumps. Install valves that are same size as piping connected to pumps.
- C. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.
- D. Install check, shutoff, and calibrated balancing valve on discharge side of pumps.
- E. Install Y-type strainer or suction diffuser and shutoff valve on suction side of pumps.
- F. Install flexible connectors on suction and discharge sides of base-mounted pumps between pump casing and valves.
- G. Install pressure gages on pump suction and discharge or at integral pressure-gage tapping, or install single gage with multiple-input selector valve.

- H. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- I. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Check piping connections for tightness.
 - 3. Clean strainers on suction piping.
 - 4. Perform the following startup checks for each pump before starting:
 - a. Verify bearing lubrication.
 - b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 - c. Verify that pump is rotating in the correct direction.
 - 5. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
 - 6. Start motor.
 - 7. Open discharge valve slowly.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain hydronic pumps.

END OF SECTION 232123

This Page Left Intentionally Blank

SECTION 232300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.3 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-407C:
 - 1. Suction Lines for Air-Conditioning Applications: 230 psig (1586 kPa).
 - 2. Suction Lines for Heat-Pump Applications: 380 psig (2620 kPa).
 - 3. Hot-Gas and Liquid Lines: 380 psig (2620 kPa).
- B. Line Test Pressure for Refrigerant R-410A:
 - 1. Suction Lines for Air-Conditioning Applications: 300 psig (2068 kPa).
 - 2. Suction Lines for Heat-Pump Applications: 535 psig (3689 kPa).
 - 3. Hot-Gas and Liquid Lines: 535 psig (3689 kPa).

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.5 QUALITY ASSURANCE

- A. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- B. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.6 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Copper Tube: ASTM B 88, Type K or L (ASTM B 88M, Type A or B).
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Wrought-Copper Unions: ASME B16.22.
- D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.

2.2 VALVES AND SPECIALTIES

- A. Moisture/Liquid Indicators:
 - 1. Body: Forged brass.
 - 2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
 - 3. Indicator: Color coded to show moisture content in ppm.
 - 4. Minimum Moisture Indicator Sensitivity: Indicate moisture above 60 ppm.
 - 5. End Connections: Socket or flare.
 - 6. Working Pressure Rating: 500 psig (3450 kPa).
 - 7. Maximum Operating Temperature: 240 deg F (116 deg C).

2.3 REFRIGERANTS

- A. ASHRAE 34, R-407C: Difluoromethane/Pentafluoroethane/1,1,1,2-Tetrafluoroethane.
- B. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-407C

- A. Suction Lines NPS 4 (DN 100) and Smaller for Conventional Air-Conditioning Applications: Copper, Type L (B), drawn-temper tubing and wrought-copper fittings with soldered joints.
- B. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type L (B), drawn-temper tubing and wrought-copper fittings with soldered joints.

3.2 PIPING APPLICATIONS FOR REFRIGERANT R-410A

A. Suction Lines NPS 4 (DN 100) and Smaller for Conventional Air-Conditioning Applications: Copper, Type L (B), drawn-temper tubing and wrought-copper fittings with soldered joints.

REFRIGERANT PIPING

B. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type L
(B), drawn-temper tubing and wrought-copper fittings with Alloy HB soldered joints.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- K. Install refrigerant piping in protective conduit where installed belowground.
- L. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- M. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Liquid lines may be installed level.
- N. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- O. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

- P. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."
- Q. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.4 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."

3.5 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - 1. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1/2 (DN 15): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 5/8 (DN 18): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1 (DN 25): Maximum span, 72 inches (1800 mm); minimum rod size, 1/4 inch (6.4 mm).
- D. Support multifloor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. Comply with ASME B31.5, Chapter VI.

REFRIGERANT PIPING

- 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
- 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.7 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers (67 Pa). If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig (14 kPa).
 - 4. Charge system with a new filter-dryer core in charging line.

END OF SECTION 232300

This Page Left Intentionally Blank

SECTION 232923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes separately enclosed, pre-assembled, combination VFCs, rated 600 V and less, for speed control of three-phase, squirrel-cage induction motors.

1.3 DEFINITIONS

- A. BAS: Building automation system.
- B. CE: Conformite Europeene (European Compliance).
- C. CPT: Control power transformer.
- D. EMI: Electromagnetic interference.
- E. IGBT: Insulated-gate bipolar transistor.
- F. LAN: Local area network.
- G. LED: Light-emitting diode.
- H. MCP: Motor-circuit protector.
- I. NC: Normally closed.
- J. NO: Normally open.
- K. OCPD: Overcurrent protective device.
- L. PCC: Point of common coupling.
- M. PID: Control action, proportional plus integral plus derivative.
- N. PWM: Pulse-width modulated.
- O. RFI: Radio-frequency interference.
- P. TDD: Total demand (harmonic current) distortion.

VARIABLE-FREQUENCY MOTOR CONTROLLERS

- Q. THD(V): Total harmonic voltage demand.
- R. VFC: Variable-frequency motor controller.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type and rating of VFC indicated. Include features, performance, electrical ratings, operating characteristics, shipping and operating weights, and furnished specialties and accessories.
- B. Shop Drawings: For each VFC indicated. Include dimensioned plans, elevations, and sections; and conduit entry locations and sizes, mounting arrangements, and details, including required clearances and service space around equipment.
 - 1. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Each installed unit's type and details.
 - b. Factory-installed devices.
 - c. Enclosure types and details.
 - d. Nameplate legends.
 - e. Short-circuit current (withstand) rating of enclosed unit.
 - f. Features, characteristics, ratings, and factory settings of each VFC and installed devices.
 - g. Specified modifications.
 - 2. Schematic and Connection Wiring Diagrams: For power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Product Certificates: For each VFC, from manufacturer.
- C. Field quality-control reports.
- D. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For VFCs to include in emergency, operation, and maintenance manuals. Include the following:
 - 1. Manufacturer's written instructions for testing and adjusting thermal-magnetic circuit breaker and MCP trip settings.
 - 2. Manufacturer's written instructions for setting field-adjustable overload relays.

- 3. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor control modules.
- 4. Manufacturer's written instructions for setting field-adjustable timers, controls, and status and alarm points.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 - 3. Indicating Lights: Two of each type and color installed.
 - 4. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.
 - 5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.8 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Store in space that is enclosed, air conditioned and free of construction born debris and dust.

1.10 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation, capable of driving full load without derating, under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than 14 deg F (minus 10 deg C) and not exceeding 104 deg F (40 deg C).
 - 2. Ambient Storage Temperature: Not less than minus 4 deg F (minus 20 deg C) and not exceeding 140 deg F (60 deg C)
 - 3. Humidity: Less than 95 percent (noncondensing).
 - 4. Altitude: Not exceeding 3300 feet (1005 m).

1.11 COORDINATION

A. Coordinate features of motors, load characteristics, installed units, and accessory devices to be compatible with the following:

VARIABLE-FREQUENCY MOTOR CONTROLLERS

- 1. Torque, speed, and horsepower requirements of the load.
- 2. Ratings and characteristics of supply circuit and required control sequence.
- 3. Ambient and environmental conditions of installation location.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases.

1.12 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide ABB; ACH 550 or comparable product by one of the following:
 - 1. <u>Danfoss Inc.; Danfoss Drives Div</u>.
 - 2. <u>Siemens Energy & Automation, Inc.</u>
 - 3. <u>Yaskawa Electric America, Inc; Drives Division</u>.
- B. General Requirements for VFCs: Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508C.
- C. Application: Variable torque.
- D. VFC Description: Variable-frequency power converter (rectifier, dc bus, and IGBT, PWM inverter) factory packaged in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as a complete unit; arranged to provide self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.
 - 1. Units suitable for operation of inverter-duty motors as defined by NEMA MG 1, Section IV, Part 31, "Definite-Purpose Inverter-Fed Polyphase Motors."
 - 2. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.
- E. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.
- F. Output Rating: Three-phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range ; maximum voltage equals input voltage.
- G. Unit Operating Requirements:

- 1. Input AC Voltage Tolerance: Plus 10 and minus 15 percent of VFC input voltage rating.
- 2. Input AC Voltage Unbalance: Not exceeding 5 percent.
- 3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
- 4. Minimum Efficiency: 97 percent at 60 Hz, full load.
- 5. Minimum Displacement Primary-Side Power Factor: 98 percent under any load or speed condition.
- 6. Minimum Short-Circuit Current (Withstand) Rating: 100 kA.
- 7. Ambient Temperature Rating: Not less than 14 deg F (minus 10 deg C) and not exceeding 104 deg F (40 deg C).
- 8. Ambient Storage Temperature Rating: Not less than minus 4 deg F (minus 20 deg C) and not exceeding 140 deg F (60 deg C)
- 9. Humidity Rating: Less than 95 percent (noncondensing).
- 10. Altitude Rating: Not exceeding 3300 feet (1005 m).
- 11. Vibration Withstand: Comply with IEC 60068-2-6.
- 12. Overload Capability: 1.1 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
- 13. Starting Torque: Minimum 100 percent of rated torque from 3 to 60 Hz.
- 14. Speed Regulation: Plus or minus 0.1 percent.
- 15. Output Carrier Frequency: Selectable; 0.5 to 15 kHz.
- 16. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.
- H. Inverter Logic: Microprocessor based, 32 bit, isolated from all power circuits.
- I. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.
 - 1. Signal: Electrical.
- J. Internal Adjustability Capabilities:
 - 1. Minimum Speed: 5 to 25 percent of maximum rpm.
 - 2. Maximum Speed: 80 to 100 percent of maximum rpm.
 - 3. Acceleration: 0.1 to 6,000 seconds.
 - 4. Deceleration: 0.1 to 6,000 seconds.
 - 5. Current Limit: 30 to minimum of 150 percent of maximum rating.
- K. Self-Protection and Reliability Features:
 - 1. Input transient protection by means of surge suppressors to provide three-phase protection against damage from supply voltage surges 10 percent or more above nominal line voltage.
 - 2. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
 - 3. Under- and overvoltage trips.
 - 4. Inverter overcurrent trips.
 - 5. VFC and Motor Overload/Overtemperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC overtemperature and motor overload alarm and trip; settings selectable via the keypad; NRTL approved.
 - 6. Critical frequency rejection, with three selectable, adjustable deadbands.
 - 7. Instantaneous line-to-line and line-to-ground overcurrent trips.

- 8. Loss-of-phase protection.
- 9. Reverse-phase protection.
- 10. Short-circuit protection.
- 11. Motor overtemperature fault.
- L. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.
- M. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.
- N. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.
- O. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.
- P. Integral Input Disconnecting Means and OCPD: NEMA AB 1, instantaneous-trip circuit breaker with pad-lockable, door-mounted handle mechanism.
 - 1. Disconnect Rating: Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.
 - 2. Auxiliary contacts "a" and "b" arranged to activate with circuit-breaker handle.
 - 3. NC alarm contact that operates only when circuit breaker has tripped.

2.2 CONTROLS AND INDICATION

- A. Status Lights: Door-mounted LED indicators displaying the following conditions:
 - 1. Power on.
 - 2. Run.
 - 3. Overvoltage.
 - 4. Line fault.
 - 5. Overcurrent.
 - 6. External fault.
- B. Panel-Mounted Operator Station: Manufacturer's standard front-accessible, sealed keypad and plain-English language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.
 - 1. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
 - 2. Security Access: Provide electronic security access to controls through identification and password with at least three levels of access: View only; view and operate; and view, operate, and service.
- a. Control Authority: Supports at least four conditions: Off, local manual control at VFC, local automatic control at VFC, and automatic control through a remote source.
- C. Historical Logging Information and Displays:
 - 1. Real-time clock with current time and date.
 - 2. Running log of total power versus time.
 - 3. Total run time.
 - 4. Fault log, maintaining last four faults with time and date stamp for each.
- D. Indicating Devices: Digital display mounted flush in VFC door and connected to display VFC parameters including, but not limited to:
 - 1. Output frequency (Hz).
 - 2. Motor speed (rpm).
 - 3. Motor status (running, stop, fault).
 - 4. Motor current (amperes).
 - 5. Motor torque (percent).
 - 6. Fault or alarming status (code).
 - 7. PID feedback signal (percent).
 - 8. DC-link voltage (V dc).
 - 9. Set point frequency (Hz).
 - 10. Motor output voltage (V ac).
- E. Control Signal Interfaces:
 - 1. Electric Input Signal Interface:
 - a. A minimum of two programmable analog inputs: 0- to 10-V dc or 4- to 20-mA dc Operator-selectable "x"- to "y"-mA dc .
 - b. A minimum of six multifunction programmable digital inputs.
 - 2. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the BAS or other control systems:
 - a. 0- to 10-V dc.
 - b. 4- to 20-mA dc.
 - c. Potentiometer using up/down digital inputs.
 - 3. Output Signal Interface: A minimum of one programmable analog output signal(s) (0- to 10-V dc or 4- to 20-mA dc operator-selectable "x"- to "y"-mA dc), which can be configured for any of the following:
 - a. Output frequency (Hz).
 - b. Output current (load).
 - c. DC-link voltage (V dc).
 - d. Motor torque (percent).
 - e. Motor speed (rpm).
 - f. Set point frequency (Hz).

- 4. Remote Indication Interface: A minimum of two programmable dry-circuit relay outputs (120-V ac, 1 A) for remote indication of the following:
 - a. Motor running.
 - b. Set point speed reached.
 - c. Fault and warning indication (overtemperature or overcurrent).
 - d. PID high- or low-speed limits reached.
- F. PID Control Interface: Provides closed-loop set point, differential feedback control in response to dual feedback signals. Allows for closed-loop control of fans and pumps for pressure, flow, or temperature regulation.
 - 1. Number of Loops: One .
- G. BAS Interface: Factory-installed hardware and software to enable the BAS to monitor, control, and display VFC status and alarms and energy usage. Allows VFC to be used with an external system within a multidrop LAN configuration; settings retained within VFC's nonvolatile memory.
 - 1. Network Communications Ports: Ethernet and RS-422/485.
 - 2. Embedded BAS Protocols for Network Communications: ASHRAE 135 BACnet, ; protocols accessible via the communications ports.

2.3 LINE CONDITIONING AND FILTERING

A. Input Line Conditioning: 3% DC Bus Reactor.

2.4 BYPASS SYSTEMS

- A. Bypass Operation: Safely transfers motor between power converter output and bypass circuit, manually, automatically, or both. Selector switches set modes and indicator lights indicate mode selected. Unit is capable of stable operation (starting, stopping, and running) with motor completely disconnected from power converter.
- B. Bypass Mode: Field-selectable automatic or manual, allows local and remote transfer between power converter and bypass contactor and retransfer, either via manual operator interface or automatic control system feedback.
- C. Bypass Controller: Three-contactor-style bypass allows motor operation via the power converter or the bypass controller; with input isolating switch and barrier arranged to isolate the power converter input and output and permit safe testing and troubleshooting of the power converter, both energized and de-energized, while motor is operating in bypass mode.
 - 1. Bypass Contactor: Load-break, NEMA-rated contactor.
 - 2. Input and Output Isolating Contactors: Non-load-break, NEMA-rated contactors.
 - 3. Isolating Switch: Non-load-break switch arranged to isolate power converter and permit safe troubleshooting and testing of the power converter, both energized and de-energized, while motor is operating in bypass mode; pad-lockable, door-mounted handle mechanism.

- D. Bypass Contactor Configuration: Reduced-voltage (autotransformer) type.
 - 1. NORMAL/BYPASS selector switch.
 - 2. HAND/OFF/AUTO selector switch.
 - 3. NORMAL/TEST Selector Switch: Allows testing and adjusting of VFC while the motor is running in the bypass mode.
 - 4. Contactor Coils: Pressure-encapsulated type with coil transient suppressors.
 - a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 - b. Power Contacts: Totally enclosed, double break, and silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.
 - 5. Control Circuits: 120 -V ac; obtained from integral CPT, with primary and secondary fuses , with CPT of sufficient capacity to operate all integral devices and remotely located pilot, indicating, and control devices.
 - a. CPT Spare Capacity: 100 VA.
 - 6. Overload Relays: NEMA ICS 2.
 - a. Solid-State Overload Relays:
 - 1) Switch or dial selectable for motor-running overload protection.
 - 2) Sensors in each phase.
 - 3) Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 - 4) Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.
 - 5) Analog communication module.
 - b. NC isolated overload alarm contact.
 - c. External overload reset push button.

2.5 OPTIONAL FEATURES

- A. Sleep Function: Senses a minimal deviation of a feedback signal and stops the motor. On an increase in speed-command signal deviation, VFC resumes normal operation.
- B. Communication Port: RS-232 port, USB 2.0 port, or equivalent connection capable of connecting a printer and a notebook computer.

2.6 ENCLOSURES

- A. VFC Enclosures: NEMA 250, to comply with environmental conditions at installed location.
 - 1. Dry and Clean Indoor Locations: Type 1.
 - 2. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12.

VARIABLE-FREQUENCY MOTOR CONTROLLERS

2.7 ACCESSORIES

- A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in VFC enclosure cover unless otherwise indicated.
 - 1. Push Buttons, Pilot Lights, and Selector Switches: Standard-duty, oiltight type.
 - a. Push Buttons: Covered types; momentary.
 - b. Pilot Lights: LED types; ; push to test.
 - c. Selector Switches: Rotary type.
- B. Phase-Failure, Phase-Reversal, and Undervoltage and Overvoltage Relays: Solid-state sensing circuit with isolated output contacts for hard-wired connections. Provide adjustable undervoltage, overvoltage, and time-delay settings.
 - 1. Current Transformers: Continuous current rating, basic impulse insulating level (BIL) rating, burden, and accuracy class suitable for connected circuitry. Comply with IEEE C57.13.
- C. Cooling Fan and Exhaust System: For NEMA 250, Type 1 ; UL 508 component recognized: Supply fan, with stainless steel intake and exhaust grills and filters; 120 -V ac; obtained from integral CPT .

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, surfaces, and substrates to receive VFCs, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance.
- B. Examine VFC before installation. Reject VFCs that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Coordinate layout and installation of VFCs with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Wall-Mounting Controllers: Install VFCs on walls with tops at uniform height and with disconnect operating handles not higher than 79 inches (2000 mm) above finished floor unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."

- C. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."
- D. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.
- E. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Identify VFCs, components, and control wiring. Comply with requirements for identification specified in Section 230553 "Identification for HVAC Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each VFC with engraved nameplate.
 - 3. Label each enclosure-mounted control and pilot device.
- B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.4 CONTROL WIRING INSTALLATION

- A. Install wiring between VFCs and remote devices and facility's central-control system. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."
- B. Bundle, train, and support wiring in enclosures.
- C. Connect selector switches and other automatic control devices where applicable.
 - 1. Connect selector switches to bypass only those manual- and automatic control devices that have no safety functions when switches are in manual-control position.
 - 2. Connect selector switches with control circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Acceptance Testing Preparation:

VARIABLE-FREQUENCY MOTOR CONTROLLERS

- 1. Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
- 2. Test continuity of each circuit.
- D. Tests and Inspections:
 - 1. Inspect VFC, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
 - 2. Test insulation resistance for each VFC element, component, connecting motor supply, feeder, and control circuits.
 - 3. Test continuity of each circuit.
 - 4. Verify that voltages at VFC locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Engineer before starting the motor(s).
 - 5. Test each motor for proper phase rotation.
 - 6. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 7. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- E. VFCs will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.6 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.7 ADJUSTING

- A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.
- B. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.
- C. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to six times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cool-down between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Engineer before increasing settings.

D. Set the taps on reduced-voltage autotransformer controllers.

3.8 **PROTECTION**

A. Replace VFCs whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, reprogram, and maintain VFCs.

END OF SECTION 232923

This Page Left Intentionally Blank

SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Single-wall round ducts and fittings.
 - 3. Double-wall round ducts and fittings.
 - 4. Sheet metal materials.
 - 5. Sealants and gaskets.
 - 6. Hangers and supports.
- B. Related Sections:
 - 1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 - 2. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, ductmounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible"
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.

METAL DUCTS

- 2. Sealants and gaskets.
- B. Delegated-Design Submittal:
 - 1. Sheet metal thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Materials, fabrication, assembly, and spacing of hangers and supports.

1.5 QUALITY ASSURANCE

- A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."
- B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 32 in Diameter: Flanged.
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 DOUBLE-WALL ROUND DUCTS AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Lindab Inc.
 - 2. McGill AirFlow LLC.
 - 3. SEMCO Incorporated.
- B. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.
 - 1. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

- C. Inner Duct: Minimum 0.028-inch (0.7-mm) perforated galvanized sheet steel having 3/32-inch-(2.4-mm-) diameter perforations, with overall open area of 23 percent .
- D. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F (0.039 W/m x K) at 75 deg F (24 deg C) mean temperature.
 - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 - 3. Coat insulation with antimicrobial coating.
 - 4. Cover insulation with polyester film complying with UL 181, Class 1.

2.4 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60 (Z180).
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- D. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.5 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.

- 8. Service: Indoor or outdoor.
- 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- C. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
 - 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- E. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg (0.14 L/s per sq. m at 250 Pa) and shall be rated for 10-inch wg (2500-Pa) static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.

2.6 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1 (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- C. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- D. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- E. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- F. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch (25 mm), plus allowance for insulation thickness.
- I. Route ducts to avoid passing through electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches (38 mm).
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

- A. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg (500 Pa) and Lower: Seal Class A.
 - 3. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg (500 Pa): Seal Class A.
 - 4. Unconditioned Space, Exhaust Ducts: Seal Class A.
 - 5. Unconditioned Space, Return-Air Ducts: Seal Class A.
 - 6. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg (500 Pa) and Lower: Seal Class A.
 - 7. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg (500 Pa): Seal Class A.
 - 8. Conditioned Space, Exhaust Ducts: Seal Class A.
 - 9. Conditioned Space, Return-Air Ducts: Seal Class A.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches (100 mm) thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches (100 mm) thick.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1 (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches (610 mm) of each elbow and within 48 inches (1200 mm) of each branch intersection.

- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet (5 m).
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:
 - 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
 - 2. Test the following systems:
 - a. Supply Ducts with a Pressure Class of 3-Inch wg (750 Pa) or Higher: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 - 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 - 4. Test for leaks before applying external insulation.
 - 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 - 6. Give seven days' advance notice for testing.
- C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.

- 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.8 DUCT CLEANING

- A. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling unit internal surfaces and components including mixing box, coil section, condensate drain pans, and filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
- B. Mechanical Cleaning Methodology:
 - 1. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 - 2. Provide drainage and cleanup for wash-down procedures.

3.9 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

3.10 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel except as otherwise indicated.
- B. Supply Ducts:
 - 1. Ducts Connected to Terminal Units :
 - a. Pressure Class: Positive 2-inch wg (500 Pa).
 - 2. Ducts Connected to Constant-Volume Air-Handling Units :
 - a. Pressure Class: Positive 2-inch wg (500 Pa).

- 3. Ducts Connected to Variable-Air-Volume Air-Handling Units :
 - a. Pressure Class: Positive 3-inch wg (750 Pa).
 - b. SMACNA Leakage Class for Rectangular: 6.
 - c. SMACNA Leakage Class for Round and Flat Oval: 6.
- 4. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive 2-inch wg (500 Pa).
- C. Return Ducts:
 - 1. Ducts Connected to Air-Handling Units :
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 - 2. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa) .
- D. Exhaust Ducts:
 - 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative 2-inch wg (500 Pa) .
 - 2. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa) .
- E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 - 1. Ducts Connected to Air-Handling Units :
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa) .
 - 2. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa) .

F. Intermediate Reinforcement:

- 1. Galvanized-Steel Ducts: Galvanized steel .
- G. Double-Wall Duct Interstitial Insulation:
 - 1. Supply Air Ducts: 2 inches (51 mm) thick.
 - 2. Return Air Ducts: 2 inches (51 mm) thick.
- H. Elbow Configuration:

- 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches (305 mm) and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches (356 mm) and Larger in Diameter: Welded.
- I. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch45-degree side take-off.
 - 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm (5 m/s) or Lower: Conical tap.
 - b. Velocity 1000 to 1500 fpm (5 to 7.6 m/s): Conical tap.
 - c. Velocity 1500 fpm (7.6 m/s) or Higher: 45-degree lateral.

END OF SECTION 233113

This Page Left Intentionally Blank

SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Backdraft and pressure relief dampers.
 - 2. Manual volume dampers.
 - 3. Control dampers.
 - 4. Fire dampers.
 - 5. Smoke dampers.
 - 6. Combination fire and smoke dampers.
 - 7. Duct silencers.
 - 8. Turning vanes.
 - 9. Duct-mounted access doors.
 - 10. Flexible connectors.
 - 11. Flexible ducts.
 - 12. Duct accessory hardware.
- B. Related Requirements:
 - 1. Division 28 Section "Digital, Addressable Fire-Alarm System" for duct-mounted fire and smoke detectors.
 - 2. Division 28 Section "Zoned (DC-Loop) Fire-Alarm System" for duct-mounted fire and smoke detectors.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60 (Z180).
 - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts.
- C. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide Ruskin Company; CBD4 or comparable product by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Nailor Industries Inc.
 - 3. Ruskin Company.
- B. Description: Gravity balanced.
- C. Maximum Air Velocity: 3000 fpm (15 m/s).
- D. Maximum System Pressure: 3-inch wg (0.8 kPa) .
- E. Frame: Hat-shaped, 0.081-inch- (2.1-mm-) thick extruded aluminum , with welded corners or mechanically attached.
- F. Blades: Multiple single-piece blades, end pivoted, maximum 6-inch (150-mm) width, 0.070inch- (1.8-mm-) thick aluminum sheet with sealed edges.
- G. Blade Action: Parallel.
- H. Blade Seals: Extruded vinyl, mechanically locked .

AIR DUCT ACCESSORIES

I. Blade Axles:

- 1. Material: Nonmetallic.
- 2. Diameter: 0.50 inch (13 mm).
- J. Tie Bars and Brackets: Aluminum.
- K. Return Spring: Adjustable tension.
- L. Bearings: Steel ball.
- M. Accessories:
 - 1. Counterweights and spring-assist kits for vertical airflow installations.
 - 2. 90-degree stops.

2.4 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Ruskin Company; MD35 or comparable product by one of the following:
 - a. Nailor Industries Inc.
 - b. Ruskin Company.
 - c. Trox USA Inc.
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames:
 - a. Frame: Hat-shaped, 0.064-inch- (1.62-mm-) thick, galvanized sheet steel].
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized -steel, 0.064 inch (1.62 mm) thick.
 - 6. Blade Axles: Galvanized steel.
 - 7. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 8. Tie Bars and Brackets: Galvanized steel.

- B. Jackshaft:
 - 1. Size: 1-inch (25-mm) diameter.
 - 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.
- C. Damper Hardware:
 - 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch- (2.4-mm-) thick zincplated steel, and a 3/4-inch (19-mm) hexagon locking nut.
 - 2. Include center hole to suit damper operating-rod size.
 - 3. Include elevated platform for insulated duct mounting.

2.5 CONTROL DAMPERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide Ruskin Company; CD60 or comparable product by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Nailor Industries Inc.
 - 3. Ruskin Company.
- B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.

C. Frames:

- 1. Hat shaped.
- 2. 0.064-inch- (1.62-mm-) thick, galvanized sheet steel.
- 3. Mitered and welded corners.
- D. Blades:
 - 1. Multiple blade with maximum blade width of 6 inches (152 mm).
 - 2. Opposed-blade design.
 - 3. Galvanized-steel.
 - 4. 0.0747-inch- (1.9-mm-) thick dual skin.
 - 5. Blade Edging: Closed-cell neoprene.
- E. Blade Axles: 1/2-inch- (13-mm-) diameter; galvanized steel ; blade-linkage hardware of zincplated steel and brass; ends sealed against blade bearings.
 - 1. Operating Temperature Range: From minus 40 to plus 200 deg F (minus 40 to plus 93 deg C).

F. Bearings:

1. Stainless-steel sleeve.

- 2. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 3. Thrust bearings at each end of every blade.

2.6 FIRE DAMPERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide Ruskin Company; IBD or comparable product by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Nailor Industries Inc.
 - 3. Ruskin Company.
- B. Type: Static ; rated and labeled according to UL 555 by an NRTL.
- C. Fire Rating: 1-1/2 hours.
- D. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 0.034-inch- (0.85-mm-) thick galvanized steel; with mitered and interlocking corners.
- E. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.036 (1.0 mm) thick, as indicated, and of length to suit application.
 - 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- F. Mounting Orientation: Vertical or horizontal as indicated.
- G. Blades: Roll-formed, interlocking, 0.024-inch- (0.61-mm) thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- (0.85-mm-) thick, galvanized-steel blade connectors.
- H. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- I. Heat-Responsive Device: Replaceable, 165 deg F (74 deg C) rated, fusible links.

2.7 SMOKE DAMPERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide Ruskin Company; SD60 or comparable product by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Nailor Industries Inc.
- B. General Requirements: Label according to UL 555S by an NRTL.
- C. Smoke Detector: Integral, factory wired for single-point connection.

- D. Frame: Hat-shaped, 0.064-inch- (1.6-mm-) thick, galvanized sheet steel, with welded corners and mounting flange.
- E. Blades: Opposed blade, horizontal, overlapping, 0.0747-inch- (1.9-mm-) thick dual skin, galvanized sheet steel.
- F. Leakage: Class I.
- G. Rated pressure and velocity to exceed design airflow conditions.
- H. Mounting Sleeve: Factory-installed, 0.052-inch- (1.3-mm-) thick, galvanized sheet steel; length to suit wall or floor application.
- I. Damper Motors: Modulating or two-position action.
- J. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 150 in. x lbf (17 N x m).
 - 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F (minus 40 deg C).
 - 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft. (2.3 sq. m), size motor for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 300 in. x lbf (34 N x m).
 - 7. Electrical Connection: 115 V, single phase, 60 Hz.
- K. Accessories:
 - 1. Auxiliary switches for signaling position indication.
 - 2. Test and reset switches, damper mounted.

2.8 COMBINATION FIRE AND SMOKE DAMPERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide Ruskin Company; FSD60 or comparable product by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Nailor Industries Inc.

- B. Type: Dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.
- C. Closing rating in ducts up to 4-inch wg (1-kPa) static pressure class and minimum 3000-fpm (15-m/s) velocity.
- D. Fire Rating: 1-1/2 hours.
- E. Frame: Hat-shaped, 0.064-inch- (1.6-mm-) thick, galvanized sheet steel, with welded corners and mounting flange.
- F. Heat-Responsive Device: Electric resettable link and switch package, factory installed, rated.
- G. Smoke Detector: Integral, factory wired for single-point connection.
- H. Blades: Opposed blade, horizontal, overlapping, 0.0747-inch- (1.9-mm-) thick dual skin, galvanized sheet steel.
- I. Leakage: Class I.
- J. Rated pressure and velocity to exceed design airflow conditions.
- K. Mounting Sleeve: Factory-installed, 0.039-inch- (1.0-mm-) thick, galvanized sheet steel; length to suit wall or floor application.
- L. Damper Motors: Modulating or two-position action.
- M. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 150 in. x lbf (17 N x m).
 - 5. Nonspring-Return Motors: For dampers larger than 25 sq. ft. (2.3 sq. m), size motor for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 300 in. x lbf (34 N x m).
 - 6. Electrical Connection: 115 V, single phase, 60 Hz.
- N. Accessories:
 - 1. Auxiliary switches for signaling position indication.
 - 2. Test and reset switches, damper mounted.

2.9 DUCT SILENCERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Industrial Noise Control, Inc.
 - 2. McGill AirFlow LLC.
 - 3. Ruskin Company.
 - 4. Vibro-Acoustics.
- B. General Requirements:
 - 1. Factory fabricated.
 - 2. Fire-Performance Characteristics: Adhesives, sealants, packing materials, and accessory materials shall have flame-spread index not exceeding 25 and smoke-developed index not exceeding 50 when tested according to ASTM E 84.
 - 3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- C. Shape:
 - 1. Rectangular straight with splitters or baffles.
 - 2. Rectangular elbow with splitters or baffles.
 - 3. Rectangular transitional with splitters or baffles.
- D. Rectangular Silencer Outer Casing: ASTM A 653/A 653M, G90 (Z275), galvanized sheet steel, 0.040 inch (1.02 mm) thick.
- E. Inner Casing and Baffles: ASTM A 653/A 653M, G90 (Z275) galvanized sheet metal, 0.034 inch (0.85 mm) thick, and with 1/8-inch- (3-mm-) diameter perforations.
- F. Special Construction:
 - 1. High transmission loss to achieve STC 45.
- G. Connection Sizes: Match connecting ductwork unless otherwise indicated.
- H. Principal Sound-Absorbing Mechanism:
 - 1. Controlled impedance membranes and broadly tuned resonators without absorptive media.
 - 2. Dissipative type with fill material.
 - a. Fill Material: Inert and vermin-proof fibrous material, packed under not less than 5 percent compression completely impregnated with antimicrobial treatment registered by the EPA for use in HVAC systems.
 - 3. Lining: None.
- I. Fabricate silencers to form rigid units that will not pulsate, vibrate, rattle, or otherwise react to system pressure variations. Do not use mechanical fasteners for unit assemblies.

- 1. Joints: Lock formed and sealed continuously welded or flanged connections.
- 2. Suspended Units: Factory-installed suspension hooks or lugs attached to frame in quantities and spaced to prevent deflection or distortion.
- 3. Reinforcement: Cross or trapeze angles for rigid suspension.

2.10 TURNING VANES

- A. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- B. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- C. Vane Construction: Double wall.

2.11 DUCT-MOUNTED ACCESS DOORS

- A. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 7-2 (7-2M), "Duct Access Doors and Panels," and 7-3, "Access Doors Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Hinges and Latches: 1-by-1-inch (25-by-25-mm)butt or piano hinge and cam latches.
 - d. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches (300 mm) Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches (460 mm) Square: Two hinges Continuous and two sash locks.
 - c. Access Doors up to 24 by 48 Inches (600 by 1200 mm): Three hinges Continuous and two compression latches.
 - d. Access Doors Larger Than 24 by 48 Inches (600 by 1200 mm): Four hinges Continuous and two compression latches with outside and inside handles.

2.13 FLEXIBLE CONNECTORS

- A. Materials: Flame-retardant or noncombustible fabrics.
- B. Coatings and Adhesives: Comply with UL 181, Class 1.
- C. Metal-Edged Connectors: Factory fabricated with a fabric strip 5-3/4 inches (146 mm) wide attached to two strips of 2-3/4-inch- (70-mm-) wide, 0.028-inch- (0.7-mm-) thick, galvanized sheet steel or 0.032-inch- (0.8-mm-) thick aluminum sheets. Provide metal compatible with connected ducts.
- D. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
 - 2. Tensile Strength: 480 lbf/inch (84 N/mm) in the warp and 360 lbf/inch (63 N/mm) in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).

2.14 FLEXIBLE DUCTS

- A. Insulated, Flexible Duct: UL 181, Class 1, black polymer film supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor-barrier film.
 - 1. Pressure Rating: 4-inch wg (1000 Pa) positive and 0.5-inch wg (125 Pa) negative.
 - 2. Maximum Air Velocity: 4000 fpm (20 m/s).
 - 3. Temperature Range: Minus 20 to plus 175 deg F (Minus 29 to plus 79 deg C).
 - 4. Insulation R-Value: 8.0
- B. Flexible Duct Connectors:
 - 1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches (75 through 460 mm), to suit duct size.

2.15 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts.
 - 1. Install steel volume dampers in steel ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire and smoke dampers according to UL listing.
- H. Connect ducts to duct silencers rigidly.
- I. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. At outdoor-air intakes and mixed-air plenums.
 - 2. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 3. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - 4. Upstream or downstream from duct silencers.
 - 5. Control devices requiring inspection.
 - 6. Downstream of terminal units with reheat coils.
 - 7. Elsewhere as indicated.
- J. Install access doors with swing against duct static pressure.
- K. Access Door Sizes:
 - 1. Two-Hand Access: 12 by 6 inches (300 by 150 mm).
- L. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

- M. Install flexible connectors to connect ducts to equipment.
- N. Connect terminal units to supply ducts directly or with maximum 24 inch lengths of flexible duct. Do not use flexible ducts to change directions.
- O. Connect diffusers to ducts directly or with maximum 720-inch (1500-mm) lengths of flexible duct clamped or strapped in place.
- P. Connect flexible ducts to metal ducts with draw bands .
- Q. Install duct test holes where required for testing and balancing purposes.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 - 4. Inspect turning vanes for proper and secure installation.

END OF SECTION 233300

SECTION 233423 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Ceiling-mounted ventilators.
 - 2. In-line centrifugal fans.

1.3 PERFORMANCE REQUIREMENTS

A. Project Altitude: Base fan-performance ratings on sea level.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 4. Material thickness and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
 - 6. Fan speed controllers.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Belts: One set(s) for each belt-driven unit.

1.7 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.
- C. UL Standards: Power ventilators shall comply with UL 705.

1.8 COORDINATION

A. Coordinate size and location of structural-steel support members.

PART 2 - PRODUCTS

2.1 CEILING-MOUNTED VENTILATORS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. <u>Carnes Company</u>.
 - 2. <u>Greenheck Fan Corporation</u>.
 - 3. <u>Loren Cook Company</u>.
 - 4. <u>PennBarry</u>.
- B. Housing: Steel, lined with acoustical insulation.
- C. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.
- D. Grille: Painted aluminum, louvered grille with flange on intake and thumbscrew attachment to fan housing.
- E. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.
- F. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Isolation: Rubber-in-shear vibration isolators.

2.2 IN-LINE CENTRIFUGAL FANS

A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

- 1. <u>Carnes Company</u>.
- 2. <u>Greenheck Fan Corporation</u>.
- 3. Loren Cook Company.
- 4. <u>PennBarry</u>.
- B. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.
- C. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.
- D. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.
- E. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.
- F. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Companion Flanges: For inlet and outlet duct connections.
 - 3. Fan Guards: 1/2- by 1-inch (13- by 25-mm) mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
 - 4. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.
- G. Characteristics:
 - 1. Vibration Isolators:
 - a. Type: Spring hangers.
 - b. Static Deflection: 1 inch (25 mm).

2.3 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- B. Enclosure Type: Totally enclosed, fan cooled.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install power ventilators level and plumb.

HVAC POWER VENTILATORS

- B. Ceiling Units: Suspend units from structure; use steel wire or metal straps with elastomeric hangers. Vibration-control devices are specified in Section 230548 "Vibration Controls for HVAC Piping and Equipment."
- C. Support suspended units from structure using threaded steel rods and spring hangers having a static deflection of 1 inch (25 mm). Vibration-control devices are specified in Section 230548 "Vibration Controls for HVAC Piping and Equipment."
- D. Install units with clearances for service and maintenance.
- E. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

- A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that cleaning and adjusting are complete.
 - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 5. Adjust belt tension.
 - 6. Adjust damper linkages for proper damper operation.
 - 7. Verify lubrication for bearings and other moving parts.
 - 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 - 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 - 10. Shut unit down and reconnect automatic temperature-control operators.
- 11. Remove and replace malfunctioning units and retest as specified above.
- C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor pulleys as required to achieve design airflow.
- E. Lubricate bearings.

This Page Left Intentionally Blank

SECTION 233600 - AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Shutoff, single-duct air terminal units.

1.3 PERFORMANCE REQUIREMENTS

A. Structural Performance: Hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" .

1.4 SUBMITTALS

- A. Product Data: For each type of the following products, including rated capacities, furnished specialties, sound-power ratings, and accessories.
 - 1. Air terminal units.
 - 2. Liners and adhesives.
 - 3. Sealants and gaskets.
- B. Field quality-control reports.
- C. Operation and Maintenance Data: For air terminal units to include in operation and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Instructions for resetting minimum and maximum air volumes.
 - 2. Instructions for adjusting software set points.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."

PART 2 - PRODUCTS

2.1 SHUTOFF, SINGLE-DUCT AIR TERMINAL UNITS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Environmental Technologies, Inc.
 - 2. <u>Titus</u>.
 - 3. <u>Trane; a business of American Standard Companies</u>.
- B. Configuration: Volume-damper assembly inside unit casing with control components inside a protective metal shroud.
- C. Casing: 0.034-inch (0.85-mm) steel, single wall.
 - 1. Casing Lining: Adhesive attached, 1-inch- (25-mm-) thick, coated, fibrous-glass duct liner complying with ASTM C 1071, and having a maximum flame-spread index of 25 and a maximum smoke-developed index of 50, for both insulation and adhesive, when tested according to ASTM E 84.
 - a. Cover liner with nonporous foil.
 - 2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
 - 3. Air Outlet: S-slip and drive connections, size matching inlet size.
 - 4. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.
 - 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- D. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.
 - 1. Maximum Damper Leakage: ARI 880 rated, 2 percent of nominal airflow at 3-inch wg (750-Pa) inlet static pressure.
 - 2. Damper Position: Normally open .
- E. Hydronic Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch (2.5 mm), and rated for a minimum working pressure of 200 psig (1380 kPa) and a maximum entering-water temperature of 220 deg F (104 deg C). Include manual air vent and drain valve.
- F. Direct Digital Controls: Bidirectional damper operators and microprocessor-based controller and room sensor. Control devices shall be compatible with temperature controls specified in Section 230900 "Instrumentation and Control for HVAC" and shall have the following features:
 - 1. Damper Actuator: 24 V, powered closed, powered open.

- 2. Terminal Unit Controller: Pressure-independent, variable-air-volume controller with electronic airflow transducer with multipoint velocity sensor at air inlet, factory calibrated to minimum and maximum air volumes, and having the following features:
 - a. Occupied and unoccupied operating mode.
 - b. Remote reset of airflow or temperature set points.
 - c. Adjusting and monitoring with portable terminal.
 - d. Communication with temperature-control system specified in Section 230900 "Instrumentation and Control for HVAC."
- 3. Room Sensor: Wall mounted with temperature set-point adjustment and access for connection of portable operator terminal.
- 4. Damper actuator, airflow sensor and microprocessor-based controller shall be provided by Instrumentation and Control sub-contractor and provided to terminal unit manufacturer for factory installation.

2.2 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Steel Cables: Galvanized steel complying with ASTM A 603.
- C. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- D. Air Terminal Unit Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- E. Trapeze and Riser Supports: Steel shapes and plates for units with steel casings; aluminum for units with aluminum casings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."
- B. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

- 1. Where practical, install concrete inserts before placing concrete.
- 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
- 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches (100 mm) thick.
- 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches (100 mm) thick.
- C. Hangers Exposed to View: Threaded rod and angle or channel supports.
- D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.3 CONNECTIONS

- A. Install piping adjacent to air terminal unit to allow service and maintenance.
- B. Hot-Water Piping: In addition to requirements in Section 232113 "Hydronic Piping," connect heating coils to supply with shutoff valve, strainer, and union or flange; and to return with shutoff valve, balancing valve, control valve, and union or flange.
- C. Connect ducts to air terminal units according to Section 233113 "Metal Ducts."
- D. Make connections to air terminal units with flexible connectors complying with requirements in Section 233300 "Air Duct Accessories."

3.4 IDENTIFICATION

A. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflows. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for equipment labels and warning signs and labels.

3.5 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
 - 2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Air terminal unit will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that inlet duct connections are as recommended by air terminal unit manufacturer to achieve proper performance.
 - 3. Verify that controls and control enclosure are accessible.
 - 4. Verify that control connections are complete.
 - 5. Verify that nameplate and identification tag are visible.
 - 6. Verify that controls respond to inputs as specified.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air terminal units.

This Page Left Intentionally Blank

SECTION 233713 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Round ceiling diffusers.
 - 2.
 - 3. Square plaque ceiling diffusers
 - 4. Linear slot diffusers.
 - 5. Adjustable bar registers and grilles.
 - 6. Vandal resistant grilles .
 - 7. Fixed face grilles .
- B. Related Sections:
 - 1. Section 233900 "Louvers and Vents" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
 - 2. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated, include the following:
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In subsequent articles subject to compliance with requirements provide products by one of the following comparable to the listed basis-of-design product.
 - 1. <u>Carnes</u>.

- 2. <u>METALAIRE, Inc</u>.
- 3. <u>Nailor Industries Inc</u>.
- 4. <u>Price Industries</u>.
- 5. <u>Titus</u>.

2.2 CEILING DIFFUSERS

- A. Round Ceiling Diffuser :
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Titus; TMRA.
 - 2. Devices shall be specifically designed for variable-air-volume flows.
 - 3. Material: Aluminum.
 - 4. Finish: Baked enamel, white.
 - 5. Face Style: Four cone.
 - 6. Mounting: Duct connection.
 - 7. Pattern: Fully adjustable.
 - 8. Dampers: Radial opposed blade.
 - 9. Accessories:
 - a. Equalizing grid.
 - b. Plaster ring.
 - c. Safety chain.
 - d. Wire guard.
 - e. Sectorizing baffles.
 - f. Operating rod extension.
- B. Square Plaque Ceiling Diffusers:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Titus; OMNI-AA.
 - 2. Devices shall be specifically designed for variable-air-volume flows.
 - 3. Material: Aluminum.
 - 4. Finish: Baked enamel, white.
 - 5. Face Size: 24 by 24 inches (600 by 600 mm) unless indicated otherwise.
 - 6. Face Style: Plaque.
 - 7. Pattern: Fixed.
 - 8. Dampers: Radial opposed blade.

2.3 CEILING LINEAR SLOT OUTLETS

- A. Linear Slot Diffuser:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Titus; ML-38.
 - 2. Devices shall be specifically designed for variable-air-volume flows.
 - 3. Material Shell: Aluminum, insulated.
 - 4. Material Pattern Controller and Tees: Aluminum.
 - 5. Finish Face and Shell: Baked enamel, black.

- 6. Finish Pattern Controller: Baked enamel, black.
- 7. Finish Tees: Baked enamel, white.

2.4 REGISTERS AND GRILLES

- A. Adjustable Bar Register:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Titus; 300FS.
 - 2. Material: Aluminum.
 - 3. Finish: Baked enamel, white.
 - 4. Face Blade Arrangement: Vertical spaced 3/4 inch (19 mm) apart.
 - 5. Core Construction: Removable.
 - 6. Rear-Blade Arrangement: Horizontal spaced 3/4 inch (19 mm) apart.
 - 7. Frame: 1 inch (25 mm) wide.
 - 8. Mounting: Countersunk screw.
 - 9. Damper Type: Adjustable opposed blade.
- B. Adjustable Bar Grille:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Titus; 300FS.
 - 2. Material: Aluminum.
 - 3. Finish: Baked enamel, white.
 - 4. Face Blade Arrangement: Vertical spaced 3/4 inch (19 mm) apart.
 - 5. Core Construction: Removable.
 - 6. Rear-Blade Arrangement: Horizontal spaced 3/4 inch (19 mm) apart.
 - 7. Frame: 1 inch (25 mm) wide.
 - 8. Mounting: Countersunk screw.
- C. Vandal Resistant Grille:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Titus; SG-1500FL.
 - 2. Security Level: Minimum.
 - 3. Material: Aluminum.
 - 4. Finish: Baked enamel, white.
 - 5. Face Arrangement:
 - a. Shape: Rectangular.
 - b. Design: Fixed bar.
 - c. 1-3/8-inch (35-mm) bars and double mandrel tubes with zero -degree deflection in 1-3/4-inch (45-mm) angle border.
 - 6. Wall Sleeve: 1/8 inch (3 mm) welded to face.
 - 7. Mounting: 1-1/4-by-1-1/4-by-3/16-inch (32-by-32-by-5-mm) retaining angle frame.
- D. Fixed Face Grille:

- 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Titus; 355FL.
- 2. Material: Aluminum.
- 3. Finish: Baked enamel, white.
- 4. Face Arrangement: 35 degree louvered blades, ¹/₂" spacing.
- 5. Core Construction: Integral.
- 6. Frame: 1 inch (25 mm) wide.
- 7. Mounting: Countersunk screw or lay in as required by ceiling type.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install diffusers, registers, and grilles level and plumb.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

SECTION 233900 - LOUVERS AND VENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fixed, extruded-aluminum louvers.
 - 2. Wall vents (brick vents).

1.3 DEFINITIONS

- A. Louver Terminology: Definitions of terms for metal louvers contained in AMCA 501 apply to this Section unless otherwise defined in this Section or in referenced standards.
- B. Horizontal Louver: Louver with horizontal blades; i.e., the axes of the blades are horizontal.
- C. Drainable-Blade Louver: Louver with blades having gutters that collect water and drain it to channels in jambs and mullions, which carry it to bottom of unit and away from opening.

1.4 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Louvers shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated without permanent deformation of louver components, noise or metal fatigue caused by louver blade rattle or flutter, or permanent damage to fasteners and anchors. Wind pressures shall be considered to act normal to the face of the building.
- B. Louver Performance Ratings: Provide louvers complying with requirements specified, as demonstrated by testing manufacturer's stock units identical to those provided, except for length and width according to AMCA 500-L.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. For louvers specified to bear AMCA seal, include printed catalog pages showing specified models with appropriate AMCA Certified Ratings Seals.

- B. Shop Drawings: For louvers and accessories. Include plans, elevations, sections, details, and attachments to other work. Show frame profiles and blade profiles, angles, and spacing.
 - 1. Show weep paths, gaskets, flashing, sealant, and other means of preventing water intrusion.
 - 2. Show mullion profiles and locations.

1.6 INFORMATIONAL SUBMITTALS

A. Product Test Reports: Based on evaluation of comprehensive tests performed according to AMCA 500-L by a qualified testing agency or by manufacturer and witnessed by a qualified testing agency, for each type of louver and showing compliance with performance requirements specified.

1.7 QUALITY ASSURANCE

- A. Source Limitations: Obtain louvers and vents from single source from a single manufacturer where indicated to be of same type, design, or factory-applied color finish.
- B. SMACNA Standard: Comply with recommendations in SMACNA's "Architectural Sheet Metal Manual" for fabrication, construction details, and installation procedures.

1.8 PROJECT CONDITIONS

A. Field Measurements: Verify actual dimensions of openings by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Aluminum Extrusions: ASTM B 221 (ASTM B 221M), Alloy 6063-T5, T-52, or T6.
- B. Aluminum Sheet: ASTM B 209 (ASTM B 209M), Alloy 3003 or 5005 with temper as required for forming, or as otherwise recommended by metal producer for required finish.
- C. Aluminum Castings: ASTM B 26/B 26M, Alloy 319.
- D. Fasteners: Use types and sizes to suit unit installation conditions.
 - 1. Use Phillips flat-head screws for exposed fasteners unless otherwise indicated.
 - 2. For fastening aluminum, use aluminum or 300 series stainless-steel fasteners.
 - 3. For fastening galvanized steel, use hot-dip-galvanized steel or 300 series stainless-steel fasteners.
 - 4. For color-finished louvers, use fasteners with heads that match color of louvers.

- E. Postinstalled Fasteners for Concrete and Masonry: Torque-controlled expansion anchors, made from stainless-steel components, with capability to sustain, without failure, a load equal to 4 times the loads imposed, for concrete, or 6 times the load imposed, for masonry, as determined by testing per ASTM E 488, conducted by a qualified independent testing agency.
- F. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187.

2.2 FABRICATION, GENERAL

- A. Assemble louvers in factory to minimize field splicing and assembly. Disassemble units as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation.
- B. Vertical Assemblies: Where height of louver units exceeds fabrication and handling limitations, fabricate units to permit field-bolted assembly with close-fitting joints in jambs and mullions, reinforced with splice plates.
 - 1. Continuous Vertical Assemblies: Fabricate units without interrupting blade-spacing pattern unless horizontal mullions are indicated .
- C. Maintain equal louver blade spacing, including separation between blades and frames at head and sill, to produce uniform appearance.
- D. Fabricate frames, including integral sills, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.
 - 1. Frame Type: Exterior flange unless otherwise indicated.
- E. Include supports, anchorages, and accessories required for complete assembly.
- F. Provide vertical mullions of type and at spacings indicated, but not more than recommended by manufacturer, or 72 inches (1830 mm) o.c., whichever is less.
 - 1. Exposed Mullions: Where indicated, provide units with exposed mullions of same width and depth as louver frame. Where length of louver exceeds fabrication and handling limitations, provide interlocking split mullions designed to permit expansion and contraction.
- G. Provide extended sills for recessed louvers.
- H. Join frame members to each other and to fixed louver blades with fillet welds, threaded fasteners, or both, as standard with louver manufacturer unless otherwise indicated or size of louver assembly makes bolted connections between frame members necessary.

2.3 FIXED, EXTRUDED-ALUMINUM LOUVERS

A. Horizontal, Drainable-Blade Louver :

- 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Ruskin Company; ELF6375DXH or comparable product by one of the following:
 - a. <u>Carnes Company, Inc</u>.
 - b. <u>Cesco Products; a division of Mestek, Inc</u>.
 - c. <u>Greenheck Fan Corporation</u>.
- 2. Louver Depth: 6 inches (150 mm).
- 3. Frame and Blade Nominal Thickness: Not less than 0.080 inch (2.03 mm).
- 4. Mullion Type: Exposed.
- 5. Louver Performance Ratings:
 - a. Free Area: Not less than 8.5 sq. ft. (0.79 sq. m) for 48-inch- (1220-mm-) wide by 48-inch- (1220-mm-) high louver.
 - b. Point of Beginning Water Penetration: Not less than 1000 fpm (5.1 m/s).
 - c. Air Performance: Not more than 0.10-inch wg (25-Pa) static pressure drop at 800-fpm (4.1-m/s) free-area intake velocity.
- 6. AMCA Seal: Mark units with AMCA Certified Ratings Seal.

2.4 LOUVER SCREENS

- A. General: Provide screen at each exterior louver.
 - 1. Screen Location for Fixed Louvers: Interior face.
 - 2. Screening Type: Bird screening.
- B. Secure screen frames to louver frames with stainless-steel machine screws machine screws with heads finished to match louver, spaced a maximum of 6 inches (150 mm) from each corner and at 12 inches (300 mm) o.c.
- C. Louver Screen Frames: Fabricate with mitered corners to louver sizes indicated.
 - 1. Metal: Same kind and form of metal as indicated for louver to which screens are attached. Reinforce extruded-aluminum screen frames at corners with clips.
 - 2. Finish: Same finish as louver frames to which louver screens are attached.
 - 3. Type: Non-rewirable, U-shaped frames.
- D. Louver Screening for Aluminum Louvers:
 - 1. Bird Screening: Aluminum, 1/2-inch- (13-mm-) square mesh, 0.063-inch (1.60-mm) wire.

2.5 BLANK-OFF PANELS

- A. Insulated, Blank-Off Panels: Laminated panels consisting of insulating core surfaced on back and front with metal sheets and attached to back of louver.
 - 1. Thickness: 2 inches (50 mm).

- 2. Metal Facing Sheets: Aluminum sheet, not less than 0.032-inch (0.81-mm) nominal thickness.
- 3. Insulating Core: Extruded-polystyrene foam .
- 4. Edge Treatment: Trim perimeter edges of blank-off panels with louver manufacturer's standard extruded-aluminum-channel frames, not less than 0.080-inch (2.03-mm) nominal thickness, with corners mitered and with same finish as panels.
- 5. Seal perimeter joints between panel faces and louver frames with gaskets or sealant.
- 6. Panel Finish: Same type of finish applied to louvers, but black color.
- 7. Attach blank-off panels with sheet metal screws.

2.6 WALL VENTS (BRICK VENTS)

- A. Extruded-Aluminum Wall Vents:
 - 1. Extruded-aluminum louvers and frames, not less than 0.125-inch (3.18-mm) nominal thickness, assembled by welding; with 18-by-14- (1.4-by-1.8-mm-) mesh, aluminum insect screening on inside face; incorporating weep holes, continuous drip at sill, and integral waterstop on inside edge of sill; of load-bearing design and construction.
 - 2. Finish: High performance organic.
- 2.7 FINISHES, GENERAL
 - A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

2.8 ALUMINUM FINISHES

- A. Finish louvers after assembly.
- B. High-Performance Organic Finish: 3 -coat fluoropolymer finish complying with AAMA 2605 and containing not less than 70 percent PVDF resin by weight in both color coat and clear topcoat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 - 1. Color and Gloss: As selected by Architect from manufacturer's full range .

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and openings, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Coordinate setting drawings, diagrams, templates, instructions, and directions for installation of anchorages that are to be embedded in concrete or masonry construction. Coordinate delivery of such items to Project site.

3.3 INSTALLATION

- A. Locate and place louvers and vents level, plumb, and at indicated alignment with adjacent work.
- B. Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection.
- C. Form closely fitted joints with exposed connections accurately located and secured.
- D. Provide perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.
- E. Repair finishes damaged by cutting, welding, soldering, and grinding. Restore finishes so no evidence remains of corrective work. Return items that cannot be refinished in the field to the factory, make required alterations, and refinish entire unit or provide new units.
- F. Protect unpainted galvanized and nonferrous-metal surfaces that will be in contact with concrete, masonry, or dissimilar metals from corrosion and galvanic action by applying a heavy coating of bituminous paint or by separating surfaces with waterproof gaskets or nonmetallic flashing.
- G. Install concealed gaskets, flashings, joint fillers, and insulation as louver installation progresses, where weathertight louver joints are required. Comply with Section 079200 "Joint Sealants" for sealants applied during louver installation.

3.4 ADJUSTING AND CLEANING

- A. Clean exposed surfaces of louvers and vents that are not protected by temporary covering, to remove fingerprints and soil during construction period. Do not let soil accumulate during construction period.
- B. Before final inspection, clean exposed surfaces with water and a mild soap or detergent not harmful to finishes. Thoroughly rinse surfaces and dry.
- C. Restore louvers and vents damaged during installation and construction so no evidence remains of corrective work. If results of restoration are unsuccessful, as determined by Architect, remove damaged units and replace with new units.
 - 1. Touch up minor abrasions in finishes with air-dried coating that matches color and gloss of, and is compatible with, factory-applied finish coating.

SECTION 234100 - PARTICULATE AIR FILTRATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pleated panel filters.
 - 2. Filter gages.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include dimensions; operating characteristics; required clearances and access; rated flow capacity, including initial and final pressure drop at rated airflow; efficiency and test method; fire classification; furnished specialties; and accessories for each model indicated.

1.4 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Provide one complete set(s) of filters for each filter bank.

1.5 QUALITY ASSURANCE

- A. ASHRAE Compliance:
 - 1. Comply with applicable requirements in ASHRAE 62.1, Section 4 "Outdoor Air Quality"; Section 5 "Systems and Equipment"; and Section 7 "Construction and Startup."
 - 2. Comply with ASHRAE 52.1 for arrestance and ASHRAE 52.2 for MERV for methods of testing and rating air-filter units.
- B. Comply with NFPA 90A and NFPA 90B.

PART 2 - PRODUCTS

2.1 PLEATED PANEL FILTERS

- A. Description: Factory-fabricated, self-supported, extended-surface, pleated, panel-type, disposable air filters with holding frames.
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Camfil Farr; AP-Thirteen or comparable product by one of the following:
 - a. <u>AAF International</u>.
 - b. <u>Airguard</u>.
 - c. <u>Camfil Farr</u>.
 - d. <u>Flanders-Precisionaire</u>.
 - e. <u>Purafil, Inc</u>.
- B. Filter Unit Class: UL 900, Class 2.
- C. Media: Interlaced glass or synthetic fibers coated with nonflammable adhesive.
 - 1. Adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Media shall be coated with an antimicrobial agent.
 - 3. Separators shall be bonded to the media to maintain pleat configuration.
 - 4. Welded wire grid shall be on downstream side to maintain pleat.
 - 5. Media shall be bonded to frame to prevent air bypass.
 - 6. Support members on upstream and downstream sides to maintain pleat spacing.
- D. Filter-Media Frame: Cardboard frame with perforated metal retainer sealed or bonded to the media.
- E. Mounting Frames: Welded galvanized steel, with gaskets and fasteners; suitable for bolting together into built-up filter banks.
- F. Capacities and Characteristics:
 - 1. Thickness or Depth: 2 inches (50 mm) or 4 inches (100 mm) as indicated.
 - 2. Maximum or Rated Face Velocity: 625 fpm (3.2 m/s).
 - 3. Efficiency: 90 percent on particles 20 micrometers and larger at 500 fpm (2.5 m/s).
 - 4. Initial Resistance: 0.25-inch wg (62 Pa) at 350 fpm (1.8 m/s).
 - 5. Recommended Final Resistance: 1.0 inches wg (249 Pa).
 - 6. MERV Rating: 13 when tested according to ASHRAE 52.2.

2.2 FILTER GAGES

- A. Diaphragm-type gage with dial and pointer in metal case, vent valves, black figures on white background, and front recalibration adjustment.
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Dwyer Instruments, Inc.; Series 2000 or comparable product by one of the following:

- a. <u>Airguard</u>.
- 2. Diameter: 4-1/2 inches (115 mm).
- 3. Scale Range for Filter Media Having a Recommended Final Resistance of 1.0- to 2.0-Inch wg (250 to 500 Pa) or Less: 0- to 2.0-inch wg (0 to 500 Pa).
- B. Accessories: Static-pressure tips, tubing, gage connections, and mounting bracket.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Position each filter unit with clearance for normal service and maintenance. Anchor filter holding frames to substrate.
- B. Install filters in position to prevent passage of unfiltered air.
- C. Install filter gage for each filter bank.
- D. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing with new, clean filters.
- E. Install filter-gage, static-pressure taps upstream and downstream from filters. Install filter gages on filter banks with separate static-pressure taps upstream and downstream from filters. Mount filter gages on outside of filter housing or filter plenum in an accessible position. Adjust and level inclined gages.
- F. Coordinate filter installations with duct and air-handling-unit installations.

3.2 CLEANING

A. After completing system installation and testing, adjusting, and balancing of air-handling and air-distribution systems, clean filter housings and install new filter media.

This Page Left Intentionally Blank

SECTION 235100 - BREECHINGS, CHIMNEYS, AND STACKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Listed double-wall vents .

1.3 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Special gas vents.
- B. Shop Drawings: For vents, breechings, chimneys, and stacks. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, methods of field assembly, components, hangers and seismic restraints, and location and size of each field connection.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain listed system components through one source from a single manufacturer.
- B. Certified Sizing Calculations: Manufacturer shall certify venting system sizing calculations.

1.5 COORDINATION

A. Coordinate installation of roof penetrations.

PART 2 - PRODUCTS

2.1 LISTED SPECIAL GAS VENTS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Simpson Dura-Vent Co. Inc.; FasNSeal or a comparable product by one of the following:
 - 1. Heat-Fab, Inc.
 - 2. <u>Metal-Fab, Inc</u>.
- B. Description: Double-wall metal vents tested according to UL 1738 and rated for 480 deg F (248 deg C) continuously, with positive or negative flue pressure complying with NFPA 211.
- C. Construction: Inner shell and outer jacket separated by at least a 1/2-inch (13-mm) airspace.
- D. Inner Shell: ASTM A 959, Type 29-4C stainless steel.
- E. Outer Jacket: Aluminized steel.
- F. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.
 - 1. Termination: Round chimney top designed to exclude minimum 98 percent of rainfall.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of work.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATION

A. Listed Special Gas Vent: Condensing gas appliances.

3.3 INSTALLATION OF LISTED VENTS

- A. Locate to comply with minimum clearances from combustibles and minimum termination heights according to product listing or NFPA 211, whichever is most stringent.
- B. Seal between sections of positive-pressure vents and grease exhaust ducts according to manufacturer's written installation instructions, using sealants recommended by manufacturer.

- C. Support vents at intervals recommended by manufacturer to support weight of vents and all accessories, without exceeding appliance loading.
- D. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain.
- E. Lap joints in direction of flow.
- F. Join sections with acid-resistant joint cement to provide continuous joint and smooth interior finish.
- G. Erect stacks plumb to finished tolerance of no more than 1 inch (25 mm) out of plumb from top to bottom.

3.4 CLEANING

- A. After completing system installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris and repair damaged finishes.
- B. Clean breechings internally, during and after installation, to remove dust and debris. Clean external surfaces to remove welding slag and mill film. Grind welds smooth and apply touchup finish to match factory or shop finish.
- C. Provide temporary closures at ends of breechings, chimneys, and stacks that are not completed or connected to equipment.

This Page Left Intentionally Blank

SECTION 235233 - WATER-TUBE BOILERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes packaged, factory-fabricated and -assembled, gas-fired, finned water-tube boilers, trim, and accessories for generating hot water.

1.3 ACTION SUBMITTALS

A. Product Data: Include performance data, operating characteristics, furnished specialties, and accessories.

1.4 INFORMATIONAL SUBMITTALS

- A. Source quality-control test reports.
- B. Field quality-control test reports.
- C. Warranty: Special warranty specified in this Section.
- D. Other Informational Submittals:
 - 1. Startup service reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For boilers, components, and accessories to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASME Compliance: Fabricate and label boilers to comply with ASME Boiler and Pressure Vessel Code.

This Page Left Intentionally Blank

- C. ASHRAE/IESNA 90.1 Compliance: Boilers shall have minimum efficiency according to "Gas and Oil Fired Boilers Minimum Efficiency Requirements."
- D. I=B=R Compliance: Boilers shall be tested and rated according to HI's "Rating Procedure for Heating Boilers" and "Testing Standard for Commercial Boilers," with I=B=R emblem on a nameplate affixed to boiler.
- E. UL Compliance: Test boilers for compliance with UL 795, "Commercial-Industrial Gas Heating Equipment." Boilers shall be listed and labeled by a testing agency acceptable to authorities having jurisdiction.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.8 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace heat exchangers damaged by thermal shock and vent dampers of boilers that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Heat Exchangers: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 FINNED WATER-TUBE BOILERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Patterson-Kelley.
 - 2. Precision Boilers.
 - 3. RBI Water Heaters.
- B. Description: Factory-fabricated, -assembled, and -tested boiler with tubes sealed into headers pressure tight, and set on a steel base; including insulated jacket, flue-gas vent, combustion-air intake connections, water supply and return connections, and controls.
- C. Heat Exchanger:
 - 1. Finned copper tubing with stainless-steel baffles.
 - 2. Cast-iron headers.
 - 3. Minimum three-pass, vertical configuration.
 - 4. Tubes shall be sealed in header by mechanically rolling tubes in header.

- D. Combustion Chamber Internal Insulation: Interlocking panels of refractory insulation, hightemperature cements, mineral fiber, and ceramic refractory tile for service temperatures to 2000 deg F (1100 deg C).
- E. Casing:
 - 1. Jacket: Sheet metal, with snap-in or interlocking closures.
 - 2. Control Compartment Enclosure: NEMA 250, Type 1A.
 - 3. Finish: Baked enamel over primer.
 - 4. Insulation: Minimum 2-inch- (50-mm- thick, mineral-fiber insulation surrounding the heat exchanger.
 - 5. Combustion-Air Connection: Inlet duct collar and sheet metal closure over burner compartment.
 - 6. Mounting base to secure boiler.
- F. Burner:
 - 1. Burner Tubes and Orifices: Stainless steel, for natural gas.
 - a. Sealed Combustion: Factory-mounted centrifugal fan to draw outside air into boiler and discharge into burner compartment.
 - b. Direct Vent: Factory-mounted centrifugal fan to draw flue gas out of boiler and discharge into boiler vent.
 - 2. Vertical Burner:
 - a. High-temperature stainless steel to fire in a 360-degree pattern.
 - b. Burner shall have a viewing port for observation of burner operation and a factorymounted centrifugal fan to supply outside air to boiler burner.
 - c. Fan shall be controlled to prepurge and postpurge the combustion chamber before firing.
 - 3. Gas Train: Control devices and full-modulation control sequence shall comply with requirements in ASME CSD-1 In addition to these requirements, include shutoff cock, pressure regulator, and control valve.
 - 4. Pilot: Intermittent-electric-spark pilot ignition with 100 percent main-valve and pilotsafety shutoff with electronic supervision of burner flame.
- G. Trim:
 - 1.
 - 2. Safety Relief Valve: ASME rated.
 - 3. Pressure and Temperature Gage: Minimum 3-1/2-inch- (89-mm-) diameter, combination water-pressure and -temperature gage. Gages shall have operating-pressure and -temperature ranges so normal operating range is about 50 percent of full range.
 - 4. Boiler Air Vent: Automatic.
 - 5. Drain Valve: Minimum NPS 3/4 (DN 20) hose-end gate valve.
- H. Controls:

- 1. Refer to Division 23 Section "Instrumentation and Control for HVAC."
- 2. Boiler operating controls shall include the following devices and features:
 - a. Control transformer.
 - b. Set-Point Adjust: Set points shall be adjustable.
- 3. Burner Operating Controls: To maintain safe operating conditions, burner safety controls limit burner operation.
 - a. High Cutoff: Automatic reset stops burner if operating conditions rise above maximum boiler design temperature.
 - b. Water Flow Switch: Automatic-reset paddle-switch shall prevent burner operation on low water flow.
 - c. Blocked Vent Safety Switch: Manual-reset switch factory mounted on draft diverter.
- 4. Building Automation System Interface: Factory install hardware and software to enable building automation system to monitor, control, and display boiler status and alarms.
 - a. Monitoring: On/off status, common trouble alarm.
 - b. Control: On/off operation, hot water supply temperature set-point adjustment.
 - c. A MODBUS communication interface with building automation system shall enable building automation system operator to remotely control and monitor the boiler from an operator workstation. Control features available, and monitoring points displayed, locally at boiler control panel shall be available through building automation system.

2.2 3) 3) ELECTRICAL POWER

- A. Single-Point Field Power Connection: Factory-installed and -wired switches, motor controllers, transformers, and other electrical devices necessary shall provide a single-point field power connection to boiler.
 - 1. House in NEMA 250, Type1 enclosure.
 - 2. Wiring shall be numbered and color-coded to match wiring diagram.
 - 3. Install factory wiring outside of an enclosure in a metalraceway.
 - 4. Field power interface shall be to nonfused disconnect switch.
 - 5. Provide each motor with overcurrent protection.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Before boiler installation, examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, and piping and electrical connections to verify actual locations, sizes, and other conditions affecting boiler performance, maintenance, and operations.

- 1. Final boiler locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.
- B. Examine mechanical spaces for suitable conditions where boilers will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 BOILER INSTALLATION

- A. Install boilers level on concrete base. Concrete base is specified in Division 23 Section "Common Work Results for HVAC," and concrete materials and installation requirements are specified in Division 03.
- B. Vibration Isolation: Elastomeric mounts with a minimum static deflection of 0.25 inch (6.35 mm. Vibration isolation devices and installation requirements are specified in Division 23 Section "Vibration Controls for HVAC Piping and Equipment."
- C. Install gas-fired boilers according to NFPA 54.
- D. Assemble and install boiler trim.
- E. Install electrical devices furnished with boiler but not specified to be factory mounted.
- F. Install control wiring to field-mounted electrical devices.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to boiler to allow service and maintenance.
- C. Connect gas piping to boiler gas-train inlet with union. Piping shall be at least full size of gas train connection. Provide a reducer if required.
- D. Connect hot-water piping to supply- and return-boiler tappings with shutoff valve and union or flange at each connection.
- E. Install piping from safety relief valves to nearest floor drain.
- F. Install piping from equipment drain connection to nearest floor drain. Piping shall be at least full size of connection. Provide an isolation valve if required.
- G. Boiler Flue Venting:
 - 1. Connect full size to boiler connections. Comply with NFPA 54 and manufacturer's installation instructions.
- H. Connect breeching to full size of boiler outlet.

- I. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- J. Connect wiring according to Division 26 Section "Low-Voltage, Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Perform installation and startup checks according to manufacturer's written instructions.
 - 2. Leak Test: Hydrostatic test. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: Start units to confirm proper motor rotation and unit operation. Adjust air-fuel ratio and combustion.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - a. Check and adjust initial operating set points and high- and low-limit safety set points of fuel supply, water level, and water temperature .
 - b. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Performance Tests:
 - 1. Engage a factory-authorized service representative to inspect component assemblies and equipment installations, including connections, and to conduct performance testing.
 - 2. Boilers shall comply with performance requirements indicated, as determined by field performance tests. Adjust, modify, or replace equipment in order to comply.
 - 3. Perform field performance tests to determine the capacity and efficiency of the boilers.
 - a. Test for full capacity.
 - 4. Provide analysis equipment required to determine performance.
 - 5. Provide temporary equipment and system modifications necessary to dissipate the heat produced during tests if building systems are not adequate.
 - 6. Notify Engineer in advance of test dates.
 - 7. Document test results in a report and submit to Engineer.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain boilers. Video training sessions. Refer to Division 01 Section "Demonstration and Training."

SECTION 236423 - SCROLL WATER CHILLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Packaged, air-cooled, electric-motor-driven, scroll water chillers.

1.3 DEFINITIONS

A. SPD: Surge Protective Device.

1.4 ACTION SUBMITTALS

- A. Product Data: Include refrigerant, rated capacities, operating characteristics, furnished specialties, and accessories.
 - 1. Performance at ARI standard conditions and at conditions indicated.
 - 2. Refrigerant capacity of water chiller.
 - 3. Oil capacity of water chiller.
 - 4. Fluid capacity of evaporator.
- B. Shop Drawings: Complete set of manufacturer's prints of water chiller assemblies, control panels, sections and elevations, and unit isolation. Include the following:
 - 1. Assembled unit dimensions.
 - 2. Weight and load distribution.
 - 3. Required clearances for maintenance and operation.
 - 4. Size and location of piping and wiring connections.
 - 5. Wiring Diagrams: For power, signal, and control wiring.
- C. Certificates: For certification required in "Quality Assurance" Article.
- D. Startup service reports.
- E. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each water chiller to include in operation and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. ARI Certification: Certify chiller according to ARI 590 certification program.
- B. ARI Rating: Rate water chiller performance according to requirements in ARI 550/590, "Water Chilling Packages Using the Vapor Compression Cycle."
- C. ASHRAE Compliance: ASHRAE 15 for safety code for mechanical refrigeration.
- D. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- E. ASME Compliance: Fabricate and stamp water chiller heat exchangers to comply with ASME Boiler and Pressure Vessel Code.
- F. Comply with NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Ship water chillers from the factory fully charged with refrigerant and filled with oil.

1.8 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.9 WARRANTY

- A. Special Warranty (Parts and Labor): Manufacturer's standard form in which manufacturer agrees to repair or replace components of water chillers that fail in materials or workmanship within specified period.
 - 1. Entire Unit Warranty Period: Ten years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PACKAGED AIR-COOLED WATER CHILLERS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. <u>Carrier Corporation</u>.
- 2. <u>McQuay International</u>.
- 3. <u>Trane</u>.
- B. Description: Factory-assembled and run-tested water chiller complete with base and frame, condenser casing, compressors, compressor motors and motor controllers, evaporator, condenser coils, condenser fans and motors, electrical power, controls, and accessories.
- C. Fabricate base, frame, and attachment to water chiller components strong enough to resist movement during a seismic event when water chiller base is anchored to field support structure.
- D. Cabinet:
 - 1. Base: Galvanized-steel base extending the perimeter of water chiller. Secure frame, compressors, and evaporator to base to provide a single-piece unit.
 - 2. Frame: Rigid galvanized-steel frame secured to base and designed to support cabinet, condenser, control panel, and other chiller components not directly supported from base.
 - 3. Casing: Galvanized steel.
 - 4. Finish: Coat base, frame, and casing with a corrosion-resistant coating capable of withstanding a 1,000 -hour salt-spray test according to ASTM B 117.
 - 5. Sound-reduction package consisting of the following:
 - a. Acoustic enclosure around compressors.
- E. Compressors:
 - 1. Description: Positive-displacement direct drive with hermetically sealed casing.
 - 2. Each compressor provided with suction and discharge service valves, crankcase oil heater, and suction strainer.
 - 3. Operating Speed: Nominal 3600 rpm for 60-Hz applications.
 - 4. Capacity Control: On-off compressor cycling, plus hot-gas bypass.
 - 5. Oil Lubrication System: Automatic pump with strainer, sight glass, filling connection, filter with magnetic plug, and initial oil charge.
 - 6. Vibration Isolation: Mount individual compressors on vibration isolators.
- F. Compressor Motors:
 - 1. Hermetically sealed and cooled by refrigerant suction gas.
 - 2. High-torque, two-pole induction type with inherent thermal-overload protection on each phase.
- G. Compressor Motor Controllers:
 - 1. Across the Line: NEMA ICS 2, Class A, full voltage, nonreversing.
- H. Refrigeration:
 - 1. Refrigerant: R-407c or R-410a. Classified as Safety Group A1 according to ASHRAE 34.
 - 2. Refrigerant Compatibility: Parts exposed to refrigerants shall be fully compatible with refrigerants, and pressure components shall be rated for refrigerant pressures.

- 3. Refrigerant Circuit: Each circuit shall include a thermal-expansion valve, refrigerant charging connections, a hot-gas muffler, compressor suction and discharge shutoff valves, a liquid-line shutoff valve, a replaceable-core filter-dryer, a sight glass with moisture indicator, a liquid-line solenoid valve, and an insulated suction line.
- 4. Refrigerant Isolation: Factory install positive shutoff isolation valves in the compressor discharge line and the refrigerant liquid-line to allow the isolation and storage of the refrigerant charge in the chiller condenser.
- I. Evaporator:
 - 1. Brazed Plate:
 - a. Direct-expansion, single-pass, brazed-plate design.
 - b. Type 316 stainless-steel construction.
 - c. Code Compliance: Tested and stamped according to ASME Boiler and Pressure Vessel Code.
 - d. Fluid Nozzles: Terminate with mechanical-coupling end connections for connection to field piping.
 - 2. Heater: Factory-installed and -wired electric heater with integral controls designed to protect the evaporator to minus 20 deg F (minus 29 deg C).
- J. Air-Cooled Condenser:
 - 1. Plate-fin coil with integral subcooling on each circuit, rated at 450 psig (3103 kPa).
 - a. Construct coils of copper tubes mechanically bonded to aluminum fins.
 - 2. Fans: Direct-drive propeller type with statically and dynamically balanced fan blades, arranged for vertical air discharge.
 - 3. Fan Motors: Totally enclosed nonventilating (TENV) or totally enclosed air over (TEAO) enclosure, with permanently lubricated bearings, and having built-in overcurrent- and thermal-overload protection.
 - 4. Fan Guards: Steel safety guards with corrosion-resistant coating.
- K. Electrical Power:
 - 1. Factory-installed and -wired switches, motor controllers, transformers, and other electrical devices necessary shall provide a single-point field power connection to water chiller.
 - 2. House in a unit-mounted, NEMA 250, Type 3R enclosure with hinged access door with lock and key or padlock and key.
 - 3. Wiring shall be numbered and color-coded to match wiring diagram.
 - 4. Install factory wiring outside of an enclosure in a raceway.
 - 5. Field power interface shall be to NEMA KS 1, heavy-duty, nonfused disconnect switch.
 - 6. Provide branch power circuit to each motor and to controls with one of the following disconnecting means:
 - a. NEMA AB 1, motor-circuit protector (circuit breaker) with field-adjustable, shortcircuit trip coordinated with motor locked-rotor amperes.

- 7. Provide each motor with overcurrent protection.
- 8. Overload relay sized according to UL 1995, or an integral component of water chiller control microprocessor.
- 9. Phase-Failure and Undervoltage: Solid-state sensing with adjustable settings.
- 10. Transformer: Unit-mounted transformer with primary and secondary fuses and sized with enough capacity to operate electrical load plus spare capacity.
 - a. Power unit-mounted controls where indicated.
- 11. Control Relays: Auxiliary and adjustable time-delay relays.
- 12. Indicate the following for water chiller electrical power supply:
 - a. Current, phase to phase, for all three phases.
 - b. Voltage, phase to phase and phase to neutral for all three phases.
 - c. Three-phase real power (kilowatts).
 - d. Three-phase reactive power (kilovolt amperes reactive).
 - e. Power factor.
 - f. Running log of total power versus time (kilowatt hours).
 - g. Fault log, with time and date of each.
- L. Controls:
 - 1. Stand-alone, microprocessor based.
 - 2. Enclosure: Share enclosure with electrical power devices or provide a separate enclosure of matching construction.
 - 3. Operator Interface: Keypad or pressure-sensitive touch screen. Multiple-character, backlit, liquid-crystal display or light-emitting diodes. Display the following:
 - a. Date and time.
 - b. Operating or alarm status.
 - c. Operating hours.
 - d. Outside-air temperature if required for chilled-water reset.
 - e. Temperature and pressure of operating set points.
 - f. Entering and leaving temperatures of chilled water.
 - g. Refrigerant pressures in evaporator and condenser.
 - h. Saturation temperature in evaporator and condenser.
 - i. No cooling load condition.
 - j. Elapsed time meter (compressor run status).
 - k. Pump status.
 - 1. Antirecycling timer status.
 - m. Percent of maximum motor amperage.
 - n. Current-limit set point.
 - o. Number of compressor starts.
 - 4. Control Functions:
 - a. Manual or automatic startup and shutdown time schedule.
 - b. Entering and leaving chilled-water temperatures, control set points, and motor load limit.
 - c. Current limit and demand limit.
 - d. External water chiller emergency stop.

- e. Antirecycling timer.
- 5. Manual-Reset Safety Controls: The following conditions shall shut down water chiller and require manual reset:
 - a. Low evaporator pressure or high condenser pressure.
 - b. Low chilled-water temperature.
 - c. Refrigerant high pressure.
 - d. High or low oil pressure.
 - e. High oil temperature.
 - f. Loss of chilled-water flow.
 - g. Control device failure.
 - h. Phase-Failure and Undervoltage
- 6. Building Automation System Interface: Factory-installed hardware and software to enable building automation system to monitor, control, and display water chiller status and alarms.
 - a. Hardwired Points:
 - 1) Monitoring: On/off status, common trouble alarm .
 - 2) Control: On/off operation, chilled-water discharge temperature set-point adjustment.
 - b. ASHRAE 135 (BACnet) communication interface with building automation system shall enable building automation system operator to remotely control and monitor the water chiller from an operator workstation. Control features and monitoring points displayed locally at water chiller control panel shall be available through building automation system.
- M. Transient Voltage Surge Suppression:
 - 1. General:
 - a. All SPDs shall be provided by the same manufacturer.
 - 2. Incoming Power SPDs
 - a. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Surge Suppression, Inc.; CDLB3Y_D1X or a comparable product by one of the following:
 - 1) <u>Liebert Corporation</u>.
 - 2) <u>Current Technology</u>.
 - b. Description: Parallel connected, type 2 SPD, Type 1 and Type 4 SPDs not permitted, listed to ANSI/UL 1449-2006 (UL 1449 3rd Edition).
 - c. Peak Surge Current: 180 kA per phase.
 - d. Nominal Discharge Current Rating: 20 kA per mode for all modes.
 - e. The Maximum Continuous Operating Voltage (MCOV) shall be as follows:

Nominal System Voltage	Mode	MCOV
120/208 Wye	L-N	150 V
	L-L	300 V
	L-G	150 V
	N-G	150 V
277/480 Wye	L-N	320 V
	L-L	550 V
	L-G	320 V
	N-G	320 V

f. The SPD shall have Voltage Protection Ratings (VPRs) as follows:

Nominal System Voltage	Mode	VPR
120/208 Wye	L-N	600 V
	L-L	1000 V
	L-G	600 V
	N-G	700 V
277/480 Wye	L-N	1200 V
	L-L	1800 V
	L-G	1200 V
	N-G	1200 V

- g. Diagnostics: LED indicator lights for power and protection status.
- h. Circuit Design: Parallel wired design incorporating all mode protection and "True" sine-wave tracking based on the results of the Category A (2kV) Ring Wave Measured Limiting Voltages.
- i. Solid-state clamping components to limit the surge voltage and divert the surge current. SPD components that "crowbar" (e.g. spark gaps, gas tubes, SCR's, etc.) are not allowed.
- j. Self-restoring and fully automatic.
- k. Capable of sustaining 115% of nominal RMS voltage continuously without degrading.
- 1. Bi-directional, thermal stress reducing, encapsulated, custom parallel and solid state circuit configuration.
- m. SPD system shall provide discrete protection for all 10 modes for a three-phase Wye-connected SPD. Distinct and independent protection circuitry for each mode is required.
- n. Enclosure: NEMA 4X, Composite Fiberglass.
- o. Disconnect: Integral, non-fused.
- p. Short Circuit Current Rating: 200 kAIC.
- q. Installation:
 - 1) Chiller manufacturer shall factory install SPD at mechanical disconnect.
 - 2) Install SPD with conductors between main lugs and SPD not exceeding 18 inches and as straight as possible. Where chiller control panel cannot accommodate lead length less than 18 inches, chiller manufacturer shall contact SPD manufacturer for alternative installation.
- 3. Control Power SPD:

- a. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Surge Suppression, Inc.; S-SPT###-30 or a comparable product by one of the following:
 - 1) <u>Liebert Corporation</u>.
 - 2) <u>Current Technology</u>.
- b. Description: Series connected type 2 SPD, Type 1 and Type 4 SPDs not permitted, listed to ANSI/UL 1449-2006 (UL 1449 3rd Edition).
- c. Peak Surge Current: 120 kA per phase.
- d. Enclosure: Plastic with mounting feet or DIN rail.
- e. Connections: 3-position screw terminal strips.
- f. Diagnostics: LED indicator lights for power and protection status.
- g. Circuit Design: Series wired design incorporating all mode protection and "True" sine-wave tracking based on the results of the Category A (2kV) Ring Wave Measured Limiting Voltages.
- h. Current Rating: 30 amps.
- i. Installation: Chiller manufacturer shall factory install SPD at load side of control transformer prior to and in series with chiller controls.
- 4. BAS Hardwired Points SPD:
 - a. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Surge Suppression, Inc.; CLP24Ax-B or a comparable product by one of the following:
 - 1) <u>Liebert Corporation</u>.
 - 2) <u>Current Technology</u>.
 - b. Description: Series connected SPD.
 - c. Peak Surge Current: 10 kA per phase.
 - d. Enclosure: Plastic with mounting feet or DIN rail.
 - e. Connections: Screw terminal strips.
 - f. Circuit Design: Series wired design incorporating all mode protection.
 - g. Current Rating: 500 mA.
 - h. Maximum Data Rate: 2 Mbps.
 - i. Installation: Chiller manufacturer shall factory install SPD in control panel ready to accept building automation hardwired terminations. Provide SPD or multiple SPDs to accommodate quantity of hardwired terminations specified.
- 5. BAS Communication Interface SPD:
 - a. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Surge Suppression, Inc.; DRJ45##C8-B or a comparable product by one of the following:
 - 1) <u>Liebert Corporation</u>.
 - 2) <u>Current Technology</u>.
 - b. Description: Series connected SPD.
 - c. Peak Surge Current: 10 kA per phase.
 - d. Enclosure: Plastic with mounting feet or DIN rail.
 - e. Connections: RJ45 modular connectors.
 - f. Circuit Design: Series wired design incorporating all mode protection.

- g. Current Rating: 500 mA.
- h. Maximum Data Rate: 100 Mbps.
- i. Installation: Chiller manufacturer shall factory install SPD in control panel ready to accept building automation communication interface.
- N. Insulation:
 - 1. Material: Closed-cell, flexible elastomeric, thermal insulation complying with ASTM C 534, Type I, for tubular materials and Type II, for sheet materials.
 - 2. Thickness: 1-1/2 inches (38 mm).
 - 3. Factory-applied insulation over cold surfaces of water chiller components.
 - a. Adhesive: As recommended by insulation manufacturer and applied to 100 percent of insulation contact surface. Seal seams and joints.
 - 4. Apply protective coating to exposed surfaces of insulation.
- O. Accessories:
 - 1. Factory-furnished, chilled-differential pressure type water flow switches for field installation.
 - 2. Individual compressor suction and discharge pressure gages with shutoff valves for each refrigeration circuit.
 - 3. Factory-furnished neoprene isolators for field installation.
- P. Characteristics:
 - 1. Evaporator Configuration: Integral to chiller.
 - 2. Evaporator Pressure Rating: 150 psig (1034 kPa).
 - 3. Evaporator Fouling Factor: 0.0001 sq. ft. x h x deg F/Btu (0.000018 sq. m x deg C/W).
 - 4. Controls Power Connection: Fed through integral transformer and SPD.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Before water chiller installation, examine roughing-in for equipment support, anchor-bolt sizes and locations, piping, and electrical connections to verify actual locations, sizes, and other conditions affecting water chiller performance, maintenance, and operations.
 - 1. Water chiller locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 WATER CHILLER INSTALLATION

A. Equipment Mounting: Install water chiller on concrete bases using elastomeric pads . Comply with requirements in Section 033053.1 "Miscellaneous Cast-in-Place Concrete for Mechanical

and Electrical Systems." Comply with requirements for vibration isolation devices specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

- 1. Minimum Deflection: 1/4 inch (6 mm).
- B. Maintain manufacturer's recommended clearances for service and maintenance.
- C. Charge water chiller with refrigerant if not factory charged and fill with oil if not factory installed.
- D. Install separate devices furnished by manufacturer and not factory installed.

3.3 CONNECTIONS

- A. Comply with requirements in Section 232113 "Hydronic Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to chiller to allow service and maintenance.
- C. Evaporator Fluid Connections: Connect to evaporator inlet with shutoff valve, strainer, flexible connector, thermometer, and plugged tee with pressure gage. Connect to evaporator outlet with shutoff valve, balancing valve, flexible connector, flow switch, thermometer, plugged tee with pressure gage, flow meter, and drain connection with valve. Make connections to water chiller with a flange or mechanical coupling.

3.4 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
- B. Inspect field-assembled components, equipment installation, and piping and electrical connections for proper assemblies, installations, and connections.
- C. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - 1. Verify that refrigerant charge is sufficient and water chiller has been leak tested.
 - 2. Verify that pumps are installed and functional.
 - 3. Verify that thermometers and gages are installed.
 - 4. Operate water chiller for run-in period.
 - 5. Check bearing lubrication and oil levels.
 - 6. Verify static deflection of vibration isolators, including deflection during water chiller startup and shutdown.
 - 7. Verify and record performance of chilled-water flow and low-temperature interlocks.
 - 8. Verify and record performance of water chiller protection devices.
 - 9. Test and adjust controls and safeties. Replace damaged or malfunctioning controls and equipment.
- D. Prepare a written startup report that records results of tests and inspections.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain water chillers. Video record the training sessions.

END OF SECTION 236423

This Page Left Intentionally Blank

SECTION 237313 - MODULAR INDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Constant-air-volume, single-zone air-handling units.
 - 2. Variable-air-volume, single-zone air-handling units.

1.3 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Casing panels shall be self-supporting and capable of withstanding the greater of 8-inches water gauge or 133 percent of internal static pressures indicated, without panel joints exceeding a deflection of L/200 where "L" is the unsupported span length within completed casings.
- B. Acoustical Performance: Sound power levels (dB) for the unit shall not exceed specified levels. The manufacturer shall provide necessary sound treatment to meet these levels if required.
- C. Leakage: The casing leakage rate shall not exceed 0.5 cfm per square foot of cabinet area at 6inches of negative static pressure or 5-inches of positive static pressure (0.0025 m/s per square meter of cabinet area at 1.24 kPA static pressure).
- D. Condensation: During first year guarantee period, if condensation forms on any section of air handler when unit is operating at design conditions, contractor shall replace or repair unit to correct the situation. Repairs shall not impair unit or component accessibility and future repair ability and inherent access for maintenance. All repairs shall be subject to Engineer's approval.

1.4 ACTION SUBMITTALS

- A. Product Data: For each air-handling unit indicated.
 - 1. Unit dimensions and weight.
 - 2. Cabinet material, metal thickness, finishes, insulation, and accessories.
 - 3. Fans:
 - a. Certified fan-performance curves with system operating conditions indicated.
 - b. Certified fan-sound power ratings for discharge, radiated and return positions by octave band.

- c. Fan construction and accessories.
- d. Motor ratings, electrical characteristics, and motor accessories.
- 4. Certified coil-performance ratings with system operating conditions indicated. Psychometric chart for each cooling coil with design and final operating points.
- 5. Calculations for required baserail heights to satisfy condensate trapping requirements of cooling coil.
- 6. Installation instructions.
- 7. Dampers, including housings, linkages, and operators.
- 8. Filters with performance characteristics.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-handling units to include in operation and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set for each air-handling unit.
 - 2. Gaskets: One set for each access door.
 - 3. Fan Belts: One set for each air-handling unit fan.

1.8 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of airhandling units and components.
- C. ARI Certification: Air-handling units and their components shall be factory tested according to ARI 430, "Central-Station Air-Handling Units," and shall be listed and labeled by ARI.
- D. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- E. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- F. Comply with NFPA 70.

1.9 COORDINATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided.
- B. The Contractor and the air handling unit manufacturer shall be responsible for insuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring and ductwork alterations of units which are dimensionally different than those specified shall be the responsibility of the contractor at no additional cost to the Owner.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Carrier Corporation; a member of the United Technologies Corporation Family.</u>
 - 2. <u>McQuay International</u>
 - 3. <u>Trane; American Standard Inc</u>.
 - 4. <u>YORK International Corporation</u>.

2.2 UNIT CASINGS

- A. General Fabrication Requirements for Casings:
 - 1. Forming: Fabricate with channel posts and panels. Form walls, roofs, and floors with at least two breaks at each joint. Panels and access doors shall be constructed as 2-inch (50 mm) nominal thick; thermal broke double wall assembly.
 - 2. Casing Joints: Mechanical fasteners.
 - 3. Sealing: All panels and ship sections shall be sealed with permanently applied bulb-type gaskets. Shipped loose gasketing is not allowed. Module to module assembly shall be accomplished with an overlapping, full perimeter, insulated, internal splice joint sealed with bulb type gasketing on both mating modules.
 - 4. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
 - 5. Blank Offs: Provide where required to insure no air bypass between sections, through perforated panels or around coils or filters.
- B. Casing Insulation and Adhesive:
 - 1. Materials: ASTM C 1071, Type II fiberglass or injected foam insulation with a composite minimum R-value of R-13.
 - 2. Location and Application: Encased between outside and inside casing.
- C. Inspection and Access Panels and Access Doors:
 - 1. Panel and Door Fabrication: Formed and reinforced, double-wall and insulated panels of same materials and thicknesses as casing.

- 2. Access Doors:
 - a. Hinges: A minimum of two ball-bearing hinges or minimum 6 inch (150 mm) stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
 - b. Gasket: Permanently applied neoprene bulb-type gaskets, applied around entire perimeters of panel frames. Shipped loose gasketing is not allowed.
 - c. Fabricate windows in fan section doors of double-glazed, wire-reinforced safety glass with an air space between panes and sealed with interior and exterior rubber seals.
 - d. Size: At least 18 inches (450 mm) wide by full height of unit casing up to a maximum height of 60 inches (1500 mm) .
- 3. Locations and Applications:
 - a. Fan Section: Doors.
 - b. Access Section: Doors.
 - c. Damper Section: Doors.
 - d. Filter Section: Doors large enough to allow periodic removal and installation of filters.
 - e. Mixing Section: Doors.
- D. Condensate Drain Pans:
 - 1. Fabricated with two percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and from humidifiers and to direct water toward drain connection.
 - a. Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1 .
 - b. Depth: A minimum of 2 inches (50 mm) deep.
 - 2. Formed sections.
 - 3. Double-wall, 304 stainless-steel sheet with space between walls filled with foam insulation and moisture-tight seal.
 - 4. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on both ends of pan.
 - a. Minimum Connection Size: NPS 2 (DN 50).
 - 5. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.
- E. Air-Handling-Unit Mounting Frame: 8-inch (200 mm) high full perimeter formed galvanizedsteel channel or structural channel supports, designed for low deflection, welded with integral lifting lugs. Welded or bolted cross members shall be provided as required for lateral stability.

2.3 FAN, DRIVE, AND MOTOR SECTION

- A. Fan and Drive Assemblies: Statically and dynamically balanced on all three planes and at all bearing points and designed for continuous operation at maximum-rated fan speed and motor horsepower.
 - 1. Shafts: Designed for continuous operation at maximum-rated fan speed and motor horsepower, and with field-adjustable alignment.
 - a. Turned, ground, and polished hot-rolled steel with keyway. Ship with a protective coating of lubricating oil.
 - b. Designed to operate at no more than 70 percent of first critical speed at top of fan's speed range.
- B. Centrifugal Fan Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.
 - 1. Bracing: Steel angle or channel supports for mounting and supporting fan scroll, wheel, motor, and accessories.
 - 2. Horizontal-Flanged, Split Housing: Bolted construction.
 - 3. Housing for Supply Fan: Attach housing to fan-section casing with metal-edged flexible duct connector.
 - 4. Flexible Connector: Factory fabricated with a fabric strip 5-3/4 inches (146 mm) wide attached to 2 strips of 2-3/4-inch- (70-mm-) wide, 0.028-inch- (0.7-mm-) thick, galvanized-steel sheet or 0.032-inch- (0.8-mm-) thick aluminum sheets; select metal compatible with casing.
 - a. Flexible Connector Fabric: Glass fabric, double coated with neoprene. Fabrics, coatings, and adhesives shall comply with UL 181, Class 1.
 - 1) Fabric Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
 - 2) Fabric Tensile Strength: 480 lbf/inch (84 N/mm) in the warp and 360 lbf/inch (63 N/mm) in the filling.
 - 3) Fabric Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).
- C. Airfoil, Centrifugal Fan Wheels: Smooth-curved inlet flange, backplate, and hollow die-formed airfoil-shaped blades continuously welded at tip flange and backplate; cast-iron or cast-steel hub riveted to backplate and fastened to shaft with set screws.
- D. Fan Shaft Bearings:
 - 1. Grease-Lubricated Bearings: Self-aligning, pillow-block-type, ball or roller bearings with adapter mount and two-piece, cast-iron housing with grease lines extended to outside unit.
- E. Belt Drives: Factory mounted, with adjustable alignment and belt tensioning, and with 1.5 service factor based on fan motor.
 - 1. Pulleys: Cast iron or cast steel with split, tapered bushing; dynamically balanced at factory.

- 2. Motor Pulleys: Adjustable pitch for use with 7-1/2-hp motors and smaller; fixed pitch for use with motors larger than 7-1/2 hp. Select pulley size so pitch adjustment is at the middle of adjustment range at fan design conditions.
- 3. Belts: Oil resistant, nonsparking, and nonstatic; in matched sets for multiple-belt drives.
- F. Internal Vibration Isolation: Fans shall be factory mounted with rubber-in-shear vibration isolation mounting devices having a minimum static deflection of 1/4 inch (6 mm).
- G. Motor: Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Enclosure Type: Open drip-proof.
 - 2. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 - 3. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 4. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.

2.4 COIL SECTION

- A. General Requirements for Coil Section:
 - 1. Comply with ARI 410.
 - 2. Fabricate coil section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
 - 3. Coils shall not act as structural component of unit and shall be removable through side and/or top panels of unit without need to remove and disassemble the entire section from the unit.
 - 4. Enclose coil headers and return bends completely within unit casing.
 - 5. Coil connections shall be factory sealed with grommets on interior and exterior and gasket sleeve between outer wall and liner to minimize air leakage and condensation inside panel assembly. If not factory packaged; contractor shall supply all coil connection grommets and sleeves.
 - 6. Vent and drain fittings shall be furnished on coil connections exterior to the air handler.

2.5 AIR FILTRATION SECTION

- A. General Requirements for Air Filtration Section:
 - 1. Comply with NFPA 90A.
 - 2. Provide minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 - 3. Provide filter holding frames arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.
 - 4. Provide filter types indicated. Comply with requirements in Section 234100 "Particulate Air Filtration".

B. Filter Gage:

- 1. <u>3-1/2-inch- (90-mm-)</u> diameter, diaphragm-actuated dial in metal case.
- 2. Vent valves.
- 3. Black figures on white background.
- 4. Front recalibration adjustment.
- 5. 2 percent of full-scale accuracy.
- 6. Range: 0- to 2.0-inch wg (0 to 500 Pa).
- 7. Accessories: Static-pressure tips with integral compression fittings, 1/4-inch (6-mm) aluminum tubing, and 2- or 3-way vent valves.

2.6 ADDITIONAL SECTIONS

- A. Access Sections: Provide to allow access between coils and as otherwise required or indicated. Access section shall be a minimum of 24 inches (610 mm) deep.
- B. Custom Section(s): Provided by the air handler manufacturer as an integral section of the unit for field installation of special components.
- C. Face and Bypass Section: Provide to modulate airflow through and around heat transfer coils.
 - 1. Dampers shall be an integral part of the unit assembly.
 - 2. Blank-off and division sheets, internal linkage, and access doors shall be installed by unit manufacturer.

2.7 DAMPERS

- A. General Requirements for Dampers: Leakage rate, according to AMCA 500, "Laboratory Methods for Testing Dampers for Rating," shall not exceed 2 percent of air quantity at 2000-fpm (10-m/s) face velocity through damper and 4-inch wg (1000-Pa) pressure differential.
- B. Damper Operators: Comply with requirements in Section 230900 "Instrumentation and Control for HVAC."
- C. Face-and-Bypass Dampers: Opposed-blade, galvanized-steel dampers with cadmiumplated steel operating rods rotating in sintered bronze or nylon bearings mounted in a single galvanized-steel frame and with operating rods connected with a common linkage. Provide blade gaskets and edge seals, and mechanically fasten blades to operating rod.
- D. Combination Filter and Mixing Section:
 - 1. Cabinet support members shall hold 2-inch- (50-mm-) thick, pleated filters.

2.8 CAPACITIES AND CHARACTERISTICS

- A. Casing:
 - 1. Outside Casing: G90 galvanized steel, minimum 0.064 inch (1.6 mm) thick.

- 2. Inside Casing: G90 galvanized steel, solid for all sections except perforated fan, minimum 0.064 inch (1.6 mm) thick.
- 3. Floor Plate: G90 galvanized steel, minimum 0.064 inch (1.6 mm) thick.
- 4. Insulation Thickness: 2 inches (50 mm).
- 5. Static-Pressure Classifications for Unit Sections before Fans: 6-inch wg (1500 Pa).
- 6. Static-Pressure Classifications for Unit Sections after Fans: 10-inch wg (2500 Pa).
- B. Supply Fan:
 - 1. Class II : AMCA 99-2408.
 - 2. Drive: V-belt.
 - 3. Type: Aluminum, airfoil centrifugal.
- C. Preheat Coils:
 - 1. Maximum Air-Side, Static-Pressure Drop: 0.25 inches wg (62 Pa).
 - 2. Coil Type: Self-draining .
 - 3. Coil Type: Single tube.
 - 4. Piping Connections: Threaded , same end of coil.
 - 5. Tube Material: Copper.
 - 6. Tube Diameter: 0.625 inches (16 mm).
 - 7. Tube Thickness: 0.025 inches (0.64 mm).
 - 8. Fin Type: Plate.
 - 9. Fin Material: Aluminum.
 - 10. Maximum Fin Spacing: 12 fins per inch (2.1 fins per mm).
 - 11. Fin Thickness: 0.0075 inches (0.19 mm).
 - 12. Fin and Tube Joint: Mechanical bond.
 - 13. Headers: Seamless copper tube with brazed joints, prime coated.
 - 14. Frames: Channel frame, 0.0625-inch (- 1.58-mm-) thick stainless steel.
 - 15. Coil Working-Pressure Ratings: 200 psig (1380 kPa), 325 deg F (163 deg C).
 - 16. Water: Maximum Water Pressure Drop: 5.0 feet of head (14.9 kPa).
- D. Cooling Coil:
 - 1. Maximum Face Velocity: 500 fpm (152 m/s).
 - 2. Maximum Air-Side, Static-Pressure Drop: 1.0 inches wg (249 Pa).
 - 3. Coil Type: Self-draining.
 - 4. Piping Connections: Threaded, same end of coil.
 - 5. Tube Material: Copper.
 - 6. Tube Diameter: 0.625 inches (16 mm).
 - 7. Tube Thickness: 0.025 inches (0.64 mm).
 - 8. Fin Type: Plate.
 - 9. Fin Material: Aluminum.
 - 10. Maximum Fin Spacing: 12 fins per inch (2.1 fins per mm).
 - 11. Fin Thickness: 0.0075 inches (0.19 mm).
 - 12. Fin and Tube Joint: Mechanical bond.
 - 13. Headers: Seamless copper tube with brazed joints, prime coated.
 - 14. Frames: Channel frame, 0.0625-inch (- 1.58-mm-) thick stainless steel.
 - 15. Maximum Number of Rows: 10.
 - 16. Coil Working-Pressure Ratings: 200 psig (1380 kPa), 325 deg F (163 deg C).
 - 17. Water: Maximum Water Pressure Drop: 10.0 feet of head (29.8 kPa).

2.9 SOURCE QUALITY CONTROL

- A. Fan Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Fans shall bear AMCA-certified sound ratings seal.
- B. Fan Performance Rating: Factory test fan performance for airflow, pressure, power, air density, rotation speed, and efficiency. Rate performance according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating."
- C. Water Coils: Factory tested to 300 psig (2070 kPa) according to ARI 410 and ASHRAE 33.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine casing insulation materials and filter media before air-handling unit installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for hydronic and condensate drainage piping systems and electrical services to verify actual locations of connections before installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 DELIVERY, STORAGE AND HANDLING

- A. Deliver, store, protect and handle products to site.
- B. Accept products on site in factory-fabricated protective containers, with factory-installed shipping skids. Inspect for damage.
- C. Store in clean dry place and protect from weather and construction traffic. Handle carefully to avoid damage to components, enclosures, and finish

3.3 INSTALLATION

- A. Equipment Mounting: Install air-handling units on concrete bases using restrained spring isolators. Secure units to anchor bolts installed in concrete bases. Comply with requirements for concrete bases specified in Section 033053.1 "Miscellaneous Cast-in-Place Concrete for Mechanical and Electrical Systems." Comply with requirements for vibration isolation devices specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."
 - 1. Minimum Deflection: 2 inches (50 mm).

- 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
- 3. Install epoxy-coated anchor bolts that extend into concrete base .
- 4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
- B. Arrange installation of units to provide access space around air-handling units for service and maintenance.
- C. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters.
- D. Install filter-gage, static-pressure taps upstream and downstream of filters. Mount filter gages on outside of filter housing or filter plenum in accessible position. Provide filter gages on filter banks, installed with separate static-pressure taps upstream and downstream of filters.

3.4 CONNECTIONS

- A. Comply with requirements for piping specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to air-handling unit to allow service and maintenance.
- C. Connect piping to air-handling units mounted on vibration isolators with flexible connectors.
- D. Connect condensate drain pans using , ASTM B 88, Type M (ASTM B 88M, Type C) copper tubing. Extend to nearest equipment or floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.
- E. Hot- and Chilled-Water Piping: Comply with applicable requirements in Section 232113 "Hydronic Piping." Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.
- F. Connect duct to air-handling units with flexible connections. Comply with requirements in Section 233300 "Air Duct Accessories."

3.5 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Leak Test: After installation, fill water coils with water, and test coils and connections for leaks.
 - 2. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- B. Air-handling unit or components will be considered defective if unit or components do not pass tests and inspections.

C. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that shipping, blocking, and bracing are removed.
 - 3. Verify that unit is secure on mountings and supporting devices and that connections to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.
 - 4. Verify proper motor rotation direction, free fan wheel rotation, and smooth bearing operations. Reconnect fan drive system, align belts, and install belt guards.
 - 5. Verify that bearings, pulleys, belts, and other moving parts are lubricated with factory-recommended lubricants.
 - 6. Verify that face-and-bypass dampers provide full face flow.
 - 7. Comb coil fins for parallel orientation.
 - 8. Install new, clean filters.
 - 9. Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.
- B. Starting procedures for air-handling units include the following:
 - 1. Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated rpm. Replace fan and motor pulleys as required to achieve design conditions.
 - 2. Measure and record motor electrical values for voltage and amperage.
 - 3. Manually operate dampers from fully closed to fully open position and record fan performance.

3.7 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

3.8 CLEANING

A. After completing system installation and testing, adjusting, and balancing air-handling unit and air-distribution systems and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.9 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air-handling units.

END OF SECTION 237313

SECTION 238126 - SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Filters: One set(s) for each air-handling unit.

1.7 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE Compliance:
 - 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
- C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

1.8 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork are specified in Section 033053.1 "Miscellaneous Cast-in-Place Concrete for Mechanical and Electrical Systems."

1.9 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period:
 - a. For Compressor: Five year(s) from date of Substantial Completion.
 - b. For Parts: One year(s) from date of Substantial Completion.
 - c. For Labor: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Mitsubishi Electric & Electronics USA, Inc.; HVAC Advanced Products Division.
 - 2. <u>SANYO North America Corporation; SANYO Fisher Company</u>.
 - 3. Diakin.

2.2 INDOOR UNITS (5 TONS (18 kW) OR LESS)

- A. Wall-Mounted, Evaporator-Fan Components:
 - 1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
 - 2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermalexpansion valve. Comply with ARI 210/240.
 - 3. Electric Coil: Helical, nickel-chrome, resistance-wire heating elements; with refractory ceramic support bushings, automatic-reset thermal cutout, built-in magnetic contactors, manual-reset thermal cutout, airflow proving device, and one-time fuses in terminal box for overcurrent protection.
 - 4. Fan: Direct drive, centrifugal.
 - 5. Fan Motors:
 - a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - c. Enclosure Type: Totally enclosed, fan cooled.
 - d. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 - e. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.
 - f. Mount unit-mounted disconnect switches on interior of unit.
 - 6. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
 - 7. Condensate Drain Pans:
 - a. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 - 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 - 2) Depth: A minimum of 1 inch (25 mm) deep.
 - b. Single-wall, galvanized -steel sheet.
 - c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 - 1) Minimum Connection Size: NPS 1 (DN 25).
 - d. Pan-Top Surface Coating: Asphaltic waterproofing compound.

2.3 OUTDOOR UNITS (5 TONS (18 kW) OR LESS)

A. Air-Cooled, Compressor-Condenser Components:

- 1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
- 2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - a. Compressor Type: Scroll.
 - b. Refrigerant Charge: R-407C or R-410A.
 - c. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 210/240.
- 3. Heat-Pump Components: Reversing valve and low-temperature-air cutoff thermostat.
- 4. Fan: Aluminum-propeller type, directly connected to motor.
- 5. Motor: Permanently lubricated, with integral thermal-overload protection.
- 6. Low Ambient Kit: Permits operation down to 45 deg F (7 deg C).

2.4 ACCESSORIES

- A. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:
 - 1. Compressor time delay.
 - 2. 24-hour time control of system stop and start.
 - 3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
 - 4. Fan-speed selection including auto setting.
- B. Automatic-reset timer to prevent rapid cycling of compressor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install units level and plumb.
- B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- C. Install ground-mounted, compressor-condenser components on 4-inch- (100-mm-) thick, reinforced concrete base that is 4 inches (100 mm) larger, on each side, than unit. Concrete, reinforcement, and formwork are specified in Section 033053.1 "Miscellaneous Cast-in-Place Concrete for Mechanical and Electrical Systems." Coordinate anchor installation with concrete base.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.

3.4 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 238126

This Page Left Intentionally Blank

SECTION 238219 - FAN COIL UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes fan-coil units and accessories.

1.3 DEFINITIONS

A. BAS: Building automation system.

1.4 ACTION SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fan-coil units to include in operation and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Maintenance schedules and repair part lists for motors, coils, integral controls, and filters.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fan-Coil-Unit Filters: Furnish One spare filters for each filter installed.

1.8 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."

1.9 COORDINATION

A. Coordinate layout and installation of fan-coil units and suspension system components with other construction that penetrates or is supported by ceilings, including light fixtures, HVAC equipment, fire-suppression-system components, and partition assemblies.

PART 2 - PRODUCTS

2.1 FAN-COIL UNITS

- A. Basis-of-Design Product: Product indicated on drawings or a comparable product by one of the following:
- B. <u>Manufacturers</u>:
 - 1. <u>Environmental Technologies, Inc</u>.
 - 2. <u>McQuay International</u>.
 - 3. <u>Trane</u>.
- C. Description: Factory-packaged and -tested units rated according to ARI 440, ASHRAE 33, and UL 1995.
- D. Coil Section Insulation: 1/2-inch (13-mm) thick, matte-finish, closed-cell foam complying with ASTM C 1071 and attached with adhesive complying with ASTM C 916.
 - 1. Fire-Hazard Classification: Insulation and adhesive shall have a combined maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E 84.
 - 2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- E. Main and Auxiliary Drain Pans: Stainless steel . Fabricate pans and drain connections to comply with ASHRAE 62.1. Provide a condensate overflow switch in the primary drain pan.
- F. Chassis: Galvanized steel where exposed to moisture. Floor-mounting units shall have leveling screws.

- G. Cabinet: Steel with baked-enamel finish in manufacturer's standard paint color as selected by Architect .
 - 1. Horizontal Unit Bottom Panels: Fastened to unit with cam fasteners and hinge and attached with safety chain; with cast-aluminum discharge grilles.
- H. Filters: Minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 - 1. Pleated Cotton-Polyester Media: 90 percent arrestance and 8 MERV.
- I. Hydronic Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch (2.5 mm), rated for a minimum working pressure of 200 psig (1378 kPa) and a maximum entering-water temperature of 220 deg F (104 deg C). Include manual air vent and drain valve.
- J. Fan and Motor Board: Removable.
 - 1. Fan: Forward curved, double width, centrifugal; directly connected to motor. Thermoplastic or painted-steel wheels, and aluminum, painted-steel, or galvanized-steel fan scrolls.
 - 2. Motor: Permanently lubricated, multispeed; resiliently mounted on motor board. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 3. Wiring Termination: Connect motor to chassis wiring with plug connection.
- K. Control devices and operational sequences are specified in Section 230900 "Instrumentation and Control for HVAC" and Section 230993 "Sequence and Operations for HVAC Controls."
- L. Electrical Connection: Factory wire motors and controls for a single electrical connection.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive fan-coil units for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in for piping and electrical connections to verify actual locations before fancoil-unit installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install fan-coil units level and plumb.
- B. Install fan-coil units to comply with NFPA 90A.

- C. Suspend fan-coil units from structure with spring hangers. Vibration isolators are specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."
- D. Verify locations of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 60 inches (1525 mm) above finished floor.
- E. Install new filters in each fan-coil unit within two weeks after Substantial Completion.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties. Specific connection requirements are as follows:
 - 1. Install piping adjacent to machine to allow service and maintenance.
 - 2. Connect piping to fan-coil-unit factory hydronic piping package. Install piping package if shipped loose.
 - 3. Connect condensate drain to indirect waste.
 - a. Install condensate trap of adequate depth to seal against the pressure of fan. Install cleanouts in piping at changes of direction.
- B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- C. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
- B. Remove and replace malfunctioning units and retest as specified above.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fan-coil units. Refer to Section 017900 "Demonstration and Training."

END OF SECTION 238219

SECTION 260100 - GENERAL PROVISIONS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Applicable provisions of this section apply to all sections of Division 26, Electrical.

1.2 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Drawn to scale, on which space competing systems are shown and coordinated with each other, using input from installers of the items involved.
- B. Qualification Data: For Installer and manufacturer.
- C. Furnish a copy of the installer's warranty.
- D. Furnish a copy of the manufacturer's warranty for each piece of equipment.
- E. Operating and Maintenance Instructions
 - 1. Secure three copies of operating and maintenance instructions, service manuals, and parts lists applicable to each item of equipment furnished. Deliver three bound sets for the Owner's use. Include nameplate data and design parameters in operation and maintenance manuals. Clearly distinguish between information which applies to the equipment and information which does not apply. Delivery of required documents is a condition of final acceptance.

1.3 QUALITY ASSURANCE

- A. General:
 - 1. It is the intent of the plans and specifications to obtain a complete, operable and satisfactory installation.
 - 2. All materials shall be new, be properly labeled and/or identified and be in full compliance with the contract documents.
 - 3. All work shall comply with applicable Codes and Standards.
 - 4. Manufacturer's model names and numbers used in these specifications are subject to change per manufacturer's action. Contractor shall therefore verify them with manufacturer's representative before ordering any product or equipment
- B. Manufacturer Qualifications: Company regularly engaged in manufacture of general use equipment with characteristics required, whose products have been in satisfactory use in similar service for not less than five years.

- C. Installer Qualifications: Company with at least three years of successful installation experience on projects with installation work similar to that required for the project.
- D. Furnish new and unused materials and equipment manufactured in the U.S.A. Where two or more units of the same type or class of equipment are required provide units of a single manufacturer.
- E. Only manufacturer's products specified hereinafter or listed in an addendum, prior to the acceptance of bids, shall be furnished and installed under this contract.
- F. All products used in this project installation shall be new and currently under manufacture and shall have been applied in similar installations for a minimum of two years. This installation shall not be used as a test site for any new products unless explicitly approved by the Owner in writing. Spare parts shall be available for at least five years after completion of this contract.
- 1.4 <u>Buy America</u>: All iron, steel and manufactured goods used in this project are to be produced in the United States. Refer to division 1 specifications for additional information and requirements.

1.5 CODE REQUIREMENTS

- A. Perform work in accordance with the following codes and any applicable statutes, ordinances, codes, and regulations of governmental authorities having jurisdiction.
 - 1. Occupational Safety and Health Regulations (OSHA).
 - 2. National Fire Codes
 - a. NFPA 1 Uniform Fire Code, 2006 Edition.
 - b. NFPA 70 National Electrical Code, 2008 Edition.
 - c. NFPA 101 Life Safety Code, 2006 Edition.
 - d. NFPA 72 National Fire alarm Code, 2007 Edition.
 - e.
 - 3. Florida Building Codes 2007 Edition w/ 2008 & 2009 Supplements
 - a. Building Code Chapter 11 Florida Accessibility Code
 - b. Building Code Chapter 13 Energy Efficiency Code
 - 4. Florida Administrative Code
 - a. Chapter 61C-5 Florida Elevator Safety Code
 - b. Chapter 69A-3 Fire Prevention General Provisions
 - c. Chapter 69A-47 Uniform Fire Safety Standards for Elevators
 - d. Chapter 69A-60 The Florida Fire Prevention Code
 - 5. ADA Accessibility Guidelines for Buildings (ADAAG)

- B. Resolve, in writing, any code violation discovered in contract documents with the Engineer prior to bidding. After award of the contract, make any correction or addition necessary for compliance with applicable codes at no additional cost to Owner.
- C. The installer shall include in the work, without extra cost to the Owner, any labor, materials, services, apparatus and drawings required to comply with all applicable laws, ordinances, rules and regulations.

1.6 REFERENCE SPECIFICATIONS AND STANDARDS

- A. Materials which are specified by reference to Federal Specifications; ASTM, ASME, ANSI, or AWWA Specifications; Federal Standards; or other standard specifications must comply with latest editions, revisions, amendments or supplements in effect on date bids are received. Specifications and standards are minimum requirements for all equipment, material and work. In instances where capacities, size or other feature of equipment, devices or materials exceed these minimums, meet listed or shown capacities.
- B. Whenever a reference is made to a standard, installation and materials shall comply with the latest published edition of the standard at the time project is bid unless otherwise specified herein

1.7 PERMITS FEES AND INSPECTIONS

- A. Obtain and pay for all permits, fees, tap fees, connection charges, demand charges, systems charges, impact fees and inspections.
- B. Deliver all certificates of inspection issued by authorities having jurisdiction to the Engineer.

1.8 WARRANTY

A. Warranty work and equipment for one year from the date of final acceptance of the project. During the warranty period provide labor and materials to make good any faults or imperfections that may arise due to defects or omissions in materials or workmanship.

PART 2 - PRODUCTS

PART 3 - EXECUTION

3.1 CONTRACT DOCUMENTS

A. Examine all drawings and specifications carefully before submitting a bid. Architectural drawings take precedence over electrical drawings with reference to building construction. If discrepancies or conflicts occur between drawings, or between drawings and specifications, notify the Engineer in writing prior to bid date; however, the most stringent requirement shall govern.

- B. For purposes of clearness and legibility, drawings are essentially diagrammatic and, although size and location of equipment are drawn to scale wherever possible, Contractor shall make use of all data in all of the contract documents and shall verify this information at the building site.
- C. The drawings indicate required size and points of termination of pipes, conduits and ducts and suggest proper routes to conform to structure avoid obstructions and preserve clearances. However, it is not intended that drawings indicate all necessary offsets, and it shall be the responsibility of the Contractor to make the installation in such a manner as to conform to structure, avoid obstructions, preserve headroom and keep openings and passageways clear, without further instructions or cost to the Owner.
- D. Furnish, install and/or connect with appropriate services all items shown on any drawing without additional compensation.
- E. Consider the terms "provide" and "install" as synonymous with "furnish and install".
- F. Any and all questions about a subcontractor's scope of work responsibility shall be addressed to and answered by the Construction Manager.
- G. Questions about Construction Documents: Any and all questions shall be submitted through the proper channels IN WRITING and, in turn, shall be answered by the Engineer in writing. All telephone conversations shall be considered unofficial and, as such, shall not be considered official or binding responses to Contractor's questions.

3.2 EXAMINATION

- A. Each Contractor shall visit the projects site and fully familiarize himself with existing conditions and account for these conditions in the submitted bids
- B. Examine conditions, with Installer present for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.
- D. Included within the scope of Division 26 is work where equipment and/or materials are furnished or required by this Division and installed under another Division (designated by the Contractor). It is the responsibility of the Contractor to see that all such work is included in the contract bid amount and completed during construction.

3.3 PRODUCT DELIVERY, STORAGE AND HANDLING

- A. Deliver and store equipment and products in factory wrapped packages which properly protect equipment against weather, dirt and damage. Materials shall not be stored in contact with ground or floor.
- B. Handle equipment carefully to avoid damage to motors, components, enclosures and finish. Do not install damaged units; replace and return damaged units to manufacturer.

3.4 INSTALLATION
- A. Install materials and equipment in a professional manner. The Engineer may direct replacement of items which, in his opinion, do not present a professional appearance. Replace or reinstall items at the expense of the Contractor.
- B. Examine all work installed by others where it applies to work of Division 26. Notify the Engineer if conditions exist which prevent satisfactory results. Start of work by the Contractor shall be construed as acceptance by him of all claims or questions as to suitability of the work of others to receive his work.
- C. Conflicts: Where there is a conflict between the contract document and an applicable "CODE", the "CODE" shall govern except where the requirements of the contract documents are more stringent; where there is a conflict between the contract drawings and the contract specifications, the most stringent shall govern.
- D. Damage to Other Work and Personnel
 - 1. Adequately protect work, equipment, fixtures, and materials. At work completion, all work must be clean and in good condition.
 - 2. Carry insurance as prescribed by law and as required in this specification for protection of employees, other persons, materials and equipment on the building site.
 - 3. Contractor shall pay for all damages caused by his personnel, including his subcontractors.
- E. Obstructions
 - 1. The drawings indicate certain information pertaining to surface and subsurface obstructions which has been taken from available drawings. Such information is not guaranteed, however, as to accuracy of location or complete information.
 - 2. Before any cutting or trenching operations are begun, verify with Owner's representative, utility companies, municipalities, and other interested parties that all available information has been provided. Verify locations given.
 - 3. Should obstruction be encountered, whether shown or not, alter routing of new work, reroute existing lines, remove obstruction where permitted, or otherwise perform whatever work is necessary to satisfy the purpose of the new work and leave existing services and structures in a satisfactory and serviceable condition.
 - 4. Assume total responsibility for and repair any damage to existing utilities or construction, whether or not such existing facilities are shown.
- F. Cutting, Patching and Excavation
 - 1. Cut and patch all walls, partitions, floors, pits and chases in wood and masonry as indicated or required by the contract documents or as directed by the Engineer.
 - 2. Obtain approval of Engineer prior to cutting of steel, wood or other structural member.
 - 3. Complete all necessary excavation and backfilling incidental to work of Division 26.
 - 4. Openings through concrete structures shall be "core bored"; where 3 or more openings penetrate in the same location the concrete may be sawed.
- G. Where "rated" walls, floor, roofs and ceilings are penetrated or cut to install equipment, materials, devices, etc. the Contractor shall provide and install all materials required to reestablish the rating of the wall, floor, roof or ceiling to the satisfaction of the authority having jurisdiction.

- H. Space Requirements: Consider space limitations imposed by contiguous work in selection and location of equipment and material. Do not provide equipment or material which is not suitable in this respect.
- I. Select equipment to operate with minimum noise and vibration. If objectionable noise or vibration is produced or transmitted to or through the building structure by equipment, piping, ducts or other parts of work, rectify such conditions without cost to the Owner.
- J. Comply with NECA 1.
- K. Wiring Method: Install cables in raceways and cable trays except low voltage network cable above accessible ceilings. Conceal raceway and cables except in unfinished spaces.
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 - 2. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceways and Boxes for Electrical Systems."
- L. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- M. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Project Record Documents
 - 1. Preparation: Maintain at the job site a separate set of white prints of the contract drawings for the sole purpose of recording the "as-built" changes and diagrams of those portions of work in which actual construction is significantly at variance with the contract drawings. Mark the drawings with a No. B or softer pencil. Prepare, as the work progresses and upon completion of work, drawings clearly indicating locations of various piping, valves, ductwork, traps, equipment, and other pertinent items, as installed. Include flow-line elevation of sewer lines. Record underground and underslab piping installed, dimensioning exact location and elevation of such piping.
 - 2. Deliver: At conclusion of project, provide without cost to Owner as-built reproducibles of original electrical drawings. Delivery of as-built reproducibles is a condition of final acceptance. In addition to final as-built drawings, each month during construction deliver current marked–up prints to the Engineer.
- C. Tests
 - 1. Include all tests specified and/or required under laws, rules and regulations of all departments having jurisdiction. Tests shall also be performed as indicated herein and other sections of the specifications.

- 2. After all electrical systems have been completed and put into operation, subject each system to an operating test under design conditions to insure proper sequence and operation throughout the range of operation. Make adjustments as required to insure proper functioning of all systems.
- 3. All parts of the work and associated equipment shall be tested and adjusted to work properly and be left in perfect operating condition.
- 4. Correct defects disclosed by these tests without any additional cost to the Owner. Repeat tests on repaired or replaced work.
- 5. Maintain a log of all tests being conducted and have it available for review by the Engineer. Log to indicate date, type of tests, duration, and defects noted and when corrected.
- 6. Special tests on individual systems are specified under individual sections.

3.6 CLEANING

- A. During construction keep the job site clean and remove all rubbish.
- B. Upon completion of work leave the premises and work in a clean and acceptable condition. Remove all tools, scaffolding, materials and rubbish from the building and site. Clean all panels and equipment.

3.7 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of systems and equipment Installer or manufacturer's authorized service representative. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacture's authorized replacement parts and supplies.

END OF SECTION 260100

This Page Left Intentionally Blank

SECTION 260105 - SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for substitutions.

1.3 DEFINITIONS

- A. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.
 - 1. Substitutions for Cause: Changes proposed by Contractor that are required due to changed Project conditions, such as unavailability of product, regulatory changes, or unavailability of required warranty terms.
 - 2. Substitutions for Convenience: Changes proposed by Contractor or Owner that are not required in order to meet other Project requirements but may offer advantage to Contractor or Owner.

1.4 ACTION SUBMITTALS

- A. Substitution Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 - 1. Substitution Request Form: Use CSI Form 13.1A.
 - 2. Documentation: Show compliance with requirements for substitutions and the following, as applicable:
 - a. Statement indicating why specified product or fabrication or installation cannot be provided, if applicable.
 - b. Coordination information, including a list of changes or revisions needed to other parts of the Work and to construction performed by Owner and separate contractors, which will be necessary to accommodate proposed substitution.
 - c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Include annotated copy of applicable Specification Section. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.

- d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.
- e. Samples, where applicable or requested.
- f. Certificates and qualification data, where applicable or requested.
- g. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners.
- h. Detailed comparison of Contractor's construction schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.
- i. Cost information, including a proposal of change, if any, in the Contract Sum.
- j. Contractor's certification that proposed substitution complies with requirements in the Contract Documents except as indicated in substitution request, is compatible with related materials, and is appropriate for applications indicated.
- k. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.
- 3. Engineer's Action: If necessary, Engineer will request additional information or documentation for evaluation within seven days of receipt of a request for substitution. Engineer will notify Contractor through Construction Manager of acceptance or rejection of proposed substitution within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.
 - a. Forms of Acceptance: Change Order, Construction Change Directive, or Architect's Supplemental Instructions for minor changes in the Work.
 - b. Use product specified if Engineer does not issue a decision on use of a proposed substitution within time allocated.

1.5 PROCEDURES

A. Coordination: Revise or adjust affected work as necessary to integrate work of the approved substitutions.

PART 2 - PRODUCTS

2.1 SUBSTITUTIONS

- A. Substitutions for Cause: Submit requests for substitution immediately on discovery of need for change, but not later than 15 days prior to time required for preparation and review of related submittals.
 - 1. Conditions: Engineer will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Engineer will return requests without action, except to record noncompliance with these requirements:

- a. Requested substitution is consistent with the Contract Documents and will produce indicated results.
- b. Substitution request is fully documented and properly submitted.
- c. Requested substitution will not adversely affect Contractor's construction schedule.
- d. Requested substitution has received necessary approvals of authorities having jurisdiction.
- e. Requested substitution is compatible with other portions of the Work.
- f. Requested substitution has been coordinated with other portions of the Work.
- g. Requested substitution provides specified warranty.
- h. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.
- B. Substitutions for Convenience: Engineer will consider requests for substitution if received within 60 days after the Notice of Award. Requests received after that time may be considered or rejected at discretion of Engineer.
 - 1. Conditions: Engineer will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Engineer will return requests without action, except to record noncompliance with these requirements:
 - a. Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner's additional responsibilities may include compensation to Engineer for redesign and evaluation services, increased cost of other construction by Owner, and similar considerations.
 - b. Requested substitution does not require extensive revisions to the Contract Documents.
 - c. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 - d. Requested substitution provides sustainable design characteristics that specified product provided.
 - e. Substitution request is fully documented and properly submitted.
 - f. Requested substitution will not adversely affect Contractor's construction schedule.
 - g. Requested substitution has received necessary approvals of authorities having jurisdiction.
 - h. Requested substitution is compatible with other portions of the Work.
 - i. Requested substitution has been coordinated with other portions of the Work.
 - j. Requested substitution provides specified warranty.
 - k. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

PART 3 - EXECUTION (Not Used)

END OF SECTION 206105

This Page Left Intentionally Blank

DOCUMENT 260110 - PROCUREMENT SUBSTITUTION PROCEDURES

1.1 DEFINITIONS

- A. Procurement Substitution Requests: Requests for changes in products, materials, equipment, and methods of construction from those indicated in the Procurement and Contracting Documents, submitted prior to receipt of bids.
- B. Substitution Requests: Requests for changes in products, materials, equipment, and methods of construction from those indicated in the Contract Documents, submitted following Contract award. See Section 260105 "Substitution Procedures" for conditions under which Substitution requests will be considered following Contract award.

1.2 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

1.3 PROCUREMENT SUBSTITUTIONS

- A. Procurement Substitutions, General: By submitting a bid, the Bidder represents that its bid is based on materials and equipment described in the Procurement and Contracting Documents, including Addenda. Bidders are encouraged to request approval of qualifying substitute materials and equipment when the Specifications Sections list materials and equipment by product or manufacturer name.
- B. Procurement Substitution Requests will be received and considered by Owner when the following conditions are satisfied, as determined by Engineer; otherwise requests will be returned without action:
 - 1. Extensive revisions to the Contract Documents are not required.
 - 2. Proposed changes are in keeping with the general intent of the Contract Documents, including the level of quality of the Work represented by the requirements therein.
 - 3. The request is fully documented and properly submitted.

1.4 SUBMITTALS

- A. Procurement Substitution Request: Submit to Engineer. Procurement Substitution Request must be made in writing in compliance with the following requirements:
 - 1. Requests for substitution of materials and equipment will be considered if received no later than 10 business days prior to date of bid opening.
 - 2. Submittal Format: Submit two copies of each written Procurement Substitution Request, using CSI Substitution Request Form 1.5C.

- a. Identify the product or the fabrication or installation method to be replaced in each request. Include related Specifications Sections and drawing numbers.
- b. Provide complete documentation on both the product specified and the proposed substitute, including the following information as appropriate:
 - 1) Point-by-point comparison of specified and proposed substitute product data, fabrication drawings, and installation procedures.
 - 2) Samples where applicable or when requested by Engineer.
 - 3) Detailed comparison of significant qualities of the proposed substitute with those of the Work specified. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
 - 4) Coordination information, including a list of changes or modifications needed to other parts of the Work and to construction performed by Owner and separate contractors, which will become necessary to accommodate the proposed substitute.
- c. Provide certification by manufacturer that the substitute proposed is equal to or superior to that required by the Procurement and Contracting Documents, and that its in-place performance will be equal to or superior to the product or equipment specified in the application indicated.
- d. Bidder, in submitting the Procurement Substitution Request, waives the right to additional payment or an extension of Contract Time because of the failure of the substitute to perform as represented in the Procurement Substitution Request.
- B. Engineer's Action:
 - 1. Engineer may request additional information or documentation necessary for evaluation of the Procurement Substitution Request. Engineer will notify all bidders of acceptance of the proposed substitute by means of an Addendum to the Procurement and Contracting Documents.
- C. Engineer's approval of a substitute during bidding does not relieve Contractor of the responsibility to submit required shop drawings and to comply with all other requirements of the Contract Documents.

END OF DOCUMENT 260110

SECTION 260120 - SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 26 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes requirements for the submittal schedule and administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.
- B. Related Requirements:
 - 1. Section 260170 "Operation and Maintenance Data" for submitting operation and maintenance manuals.
 - 2. Section 260180 "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.
 - 3. Section 260190 "Demonstration and Training" for submitting video recordings of demonstration of equipment and training of Owner's personnel.

1.3 DEFINITIONS

- A. Informational Submittals: Written and graphic information and physical samples that do not require Engineer's responsive action. Submittals may be rejected for not complying with requirements. Informational submittals are those submittals indicated in individual Specification Sections as "informational submittals."
- B. File Transfer Protocol (FTP): Communications protocol that enables transfer of files to and from another computer over a network and that serves as the basis for standard Internet protocols. An FTP site is a portion of a network located outside of network firewalls within which internal and external users are able to access files.
- C. Portable Document Format (PDF): An open standard file format licensed by Adobe Systems used for representing documents in a device-independent and display resolution-independent fixed-layout document format.

1.4 SUBMITTAL ADMINISTRATIVE REQUIREMENTS

- A. Engineer's Digital Data Files: Electronic digital data files of the Contract Drawings will not be provided by Engineer for Contractor's use in preparing submittals.
 - 1. Engineer will furnish Contractor one set of digital data drawing files of the Contract Drawings for use in preparing Shop Drawings and Project record drawings.

- a. Engineer makes no representations as to the accuracy or completeness of digital data drawing files as they relate to the Contract Drawings.
- b. Digital Drawing Software Program: The Contract Drawings are available in AutoCAD version 2008 DWG format.
- c. Contractor shall execute a data licensing agreement in the form of AIA Document C106, Digital Data Licensing Agreement.
- d. The following digital data files will by furnished for each appropriate discipline:
 - 1) Floor plans.
 - 2) Reflected ceiling plans.
- B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 - 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 - 2. Submit all submittal items required for each Specification Section concurrently unless partial submittals for portions of the Work are indicated on approved submittal schedule.
 - 3. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.
 - a. Engineer reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.
- C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Engineer's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 - 1. Initial Review: Allow 15 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Engineer will advise Contractor when a submittal being processed must be delayed for coordination.
 - 2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.
 - 3. Resubmittal Review: Allow 15 days for review of each resubmittal.
 - 4. Sequential Review: Where sequential review of submittals by Engineer's consultants, Owner, or other parties is indicated, allow 21 days for initial review of each submittal.
- D. Electronic Submittals: Identify and incorporate information in each electronic submittal file as follows:
 - 1. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.
 - 2. Name file with submittal number or other unique identifier, including revision identifier.
 - a. File name shall use project identifier and Specification Section number followed by a decimal point and then a sequential number (e.g., LNHS-061000.01). Resubmittals shall include an alphabetic suffix after another decimal point (e.g., LNHS-061000.01.A).

- 3. Provide means for insertion to permanently record Contractor's review and approval markings and action taken by Engineer.
- 4. Transmittal Form for Electronic Submittals: Use electronic form acceptable to Owner, containing the following information:
 - a. Project name.
 - b. Date.
 - c. Name and address of Engineer.
 - d. Name of Construction Manager.
 - e. Name of Contractor.
 - f. Name of firm or entity that prepared submittal.
 - g. Names of subcontractor, manufacturer, and supplier.
 - h. Category and type of submittal.
 - i. Submittal purpose and description.
 - j. Specification Section number and title.
 - k. Specification paragraph number or drawing designation and generic name for each of multiple items.
 - 1. Drawing number and detail references, as appropriate.
 - m. Location(s) where product is to be installed, as appropriate.
 - n. Related physical samples submitted directly.
 - o. Indication of full or partial submittal.
 - p. Transmittal number, numbered consecutively.
 - q. Submittal and transmittal distribution record.
 - r. Other necessary identification.
 - s. Remarks.
- 5. Metadata: Include the following information as keywords in the electronic submittal file metadata:
 - a. Project name.
 - b. Number and title of appropriate Specification Section.
 - c. Manufacturer name.
 - d. Product name.
- E. Options: Identify options requiring selection by Engineer.
- F. Deviations and Additional Information: On an attached separate sheet, prepared on Contractor's letterhead, record relevant information, requests for data, revisions other than those requested by Engineer on previous submittals, and deviations from requirements in the Contract Documents, including minor variations and limitations. Include same identification information as related submittal.
- G. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
 - 1. Note date and content of previous submittal.
 - 2. Note date and content of revision in label or title block and clearly indicate extent of revision.
 - 3. Resubmit submittals until they are marked with approval notation from Engineer's action stamp.

- H. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.
- I. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Engineer's action stamp.

PART 2 - PRODUCTS

2.1 SUBMITTAL PROCEDURES

- A. General Submittal Procedure Requirements: Prepare and submit submittals required by individual Specification Sections. Types of submittals are indicated in individual Specification Sections.
 - 1. Post electronic submittals as PDF electronic files directly to Engineer's FTP site specifically established for Project.
 - a. Engineer will return annotated file. Annotate and retain one copy of file as an electronic Project record document file.
 - 2. Certificates and Certifications Submittals: Provide a statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity.
 - a. Provide a digital signature with digital certificate on electronically submitted certificates and certifications where indicated.
- B. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.
 - 1. If information must be specially prepared for submittal because standard published data are not suitable for use, submit as Shop Drawings, not as Product Data.
 - 2. Mark each copy of each submittal to show which products and options are applicable.
 - 3. Include the following information, as applicable:
 - a. Manufacturer's catalog cuts.
 - b. Manufacturer's product specifications.
 - c. Standard color charts.
 - d. Statement of compliance with specified referenced standards.
 - e. Testing by recognized testing agency.
 - f. Application of testing agency labels and seals.
 - g. Notation of coordination requirements.
 - h. Availability and delivery time information.
 - 4. For equipment, include the following in addition to the above, as applicable:
 - a. Wiring diagrams showing factory-installed wiring.

- b. Printed performance curves.
- c. Operational range diagrams.
- d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.
- 5. Submit Product Data before or concurrent with Samples.
- 6. Submit Product Data in the following format:
 - a. PDF electronic file.
- C. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data.
 - 1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 - a. Identification of products.
 - b. Schedules.
 - c. Compliance with specified standards.
 - d. Notation of coordination requirements.
 - e. Notation of dimensions established by field measurement.
 - f. Relationship and attachment to adjoining construction clearly indicated.
 - g. Seal and signature of professional engineer if specified.
 - 2. Sheet Size: Except for templates, patterns, and similar full-size drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches (215 by 280 mm), but no larger than 30 by 42 inches (750 by 1067 mm).
 - 3. Submit Shop Drawings in the following format:
 - a. PDF electronic file.
- D. Maintenance Data: Comply with requirements specified in Section 260170 "Operation and Maintenance Data."
- E. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of Engineers and owners, and other information specified.
- F. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.
- G. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.

2.2 DELEGATED-DESIGN SERVICES

- A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.
 - 1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Engineer.
- B. Delegated-Design Services Certification: In addition to Shop Drawings, Product Data, and other required submittals, submit four paper copies of certificate, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.
 - 1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

PART 3 - EXECUTION

3.1 CONTRACTOR'S REVIEW

- A. Action and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Engineer.
- B. Approval Stamp: Stamp each submittal with a uniform, approval stamp. Include Project name and location, submittal number, Specification Section title and number, name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.

3.2 ENGINEER'S ACTION

- A. Action Submittals: Engineer will review each submittal, make marks to indicate corrections or revisions required, and return it. Engineer will stamp each submittal with an action stamp and will mark stamp appropriately to indicate action.
- B. Informational Submittals: Engineer will review each submittal and will not return it, or will return it if it does not comply with requirements. Engineer will forward each submittal to appropriate party.
- C. Partial submittals prepared for a portion of the Work will be reviewed when use of partial submittals has received prior approval from Engineer.
- D. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.
- E. Submittals not required by the Contract Documents may be returned by the Engineer without action.

END OF SECTION 260120

This Page Left Intentionally Blank

SECTION 260130 - QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 26 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for quality assurance and quality control.
- B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
 - 1. Specific quality-assurance and -control requirements for individual construction activities are specified in the Sections that specify those activities. Requirements in those Sections may also cover production of standard products.
 - 2. Specified tests, inspections, and related actions do not limit Contractor's other qualityassurance and -control procedures that facilitate compliance with the Contract Document requirements.
 - 3. Requirements for Contractor to provide quality-assurance and -control services required by Engineer, Owner, Commissioning Authority, or authorities having jurisdiction are not limited by provisions of this Section.
 - 4. Specific test and inspection requirements are not specified in this Section.

1.3 DEFINITIONS

- A. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.
- B. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Engineer.
- C. Source Quality-Control Testing: Tests and inspections that are performed at the source, e.g., plant, mill, factory, or shop.
- D. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work.

- E. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.
- F. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations.
 - 1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade(s).
- G. Experienced: When used with an entity or individual, "experienced" means having successfully completed a minimum of five previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.

1.4 CONFLICTING REQUIREMENTS

- A. Referenced Standards: If compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but apparently equal, to Engineer for a decision before proceeding.
- B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Engineer for a decision before proceeding.

1.5 QUALITY ASSURANCE

- A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.
- B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- D. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.
- E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing

engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or product that are similar in material, design, and extent to those indicated for this Project.

- F. Manufacturer's Technical Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.
- G. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

1.6 QUALITY CONTROL

- A. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections.
- B. Manufacturer's Technical Services: Where indicated, engage a manufacturer's technical representative to observe and inspect the Work. Manufacturer's technical representative's services include participation in preinstallation conferences, examination of substrates and conditions, verification of materials, observation of Installer activities, inspection of completed portions of the Work, and submittal of written reports.
- C. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.
- D. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.
 - 1. Schedule times for tests, inspections, obtaining samples, and similar activities.
- E. Schedule of Tests and Inspections: Prepare a schedule of tests, inspections, and similar qualitycontrol services required by the Contract Documents as a component of Contractor's qualitycontrol plan. Coordinate and submit concurrently with Contractor's construction schedule. Update as the Work progresses.
 - 1. Distribution: Distribute schedule to Owner, Engineer, Commissioning Authority, testing agencies, and each party involved in performance of portions of the Work where tests and inspections are required.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TEST AND INSPECTION LOG

- A. Test and Inspection Log: Prepare a record of tests and inspections. Include the following:
 - 1. Date test or inspection was conducted.
 - 2. Description of the Work tested or inspected.
 - 3. Date test or inspection results were transmitted to Engineer.
 - 4. Identification of testing agency or special inspector conducting test or inspection.
- B. Maintain log at Project site. Post changes and revisions as they occur. Provide access to test and inspection log for Engineer's, Commissioning Authority's, reference during normal working hours.

3.2 REPAIR AND PROTECTION

- A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.
 - 1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. Comply with the Contract Document requirements for cutting and patching in Section 017300 "Execution."
- B. Protect construction exposed by or for quality-control service activities.
- C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

END OF SECTION 260130

SECTION 260140 - TEMPORARY FACILITIES AND CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 26 Specification Sections, apply to this Section.

1.2 USE CHARGES

- A. General: Installation and removal of and use charges for temporary facilities shall be included in the Contract Sum unless otherwise indicated. Allow other entities to use temporary services and facilities without cost, including, but not limited to, Owner's construction forces, and authorities having jurisdiction.
- B. Electric Power Service: Pay electric-power-service use charges for electricity used by all entities for construction operations.
- C. Electric Power Service from Existing System: Electric power from Owner's existing system is not available for use.

1.3 QUALITY ASSURANCE

- A. Electric Service: Comply with NECA, NEMA, and UL standards and regulations for temporary electric service. Install service to comply with NFPA 70 and NESC.
- B. Tests and Inspections: Arrange for authorities having jurisdiction to test and inspect each temporary utility before use. Obtain required certifications and permits.

PART 2 - PRODUCTS

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Locate facilities where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required by progress of the Work.
- B. Provide each facility ready for use when needed to avoid delay. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities.

3.2 TEMPORARY UTILITY INSTALLATION

- A. General: Install temporary service.
 - 1. Arrange with utility company, Owner, and existing users for time when service can be interrupted, if necessary, to make connections for temporary services.
- B. Electric Power Service: Provide electric power service and distribution system of sufficient size, capacity, and power characteristics required for construction operations.
 - 1. Install electric power service overhead or underground as directed by the utility and the owner's representative.
- C. Lighting: Provide temporary lighting with local switching that provides adequate illumination for construction operations, observations, inspections, and traffic conditions.
 - 1. Install and operate temporary lighting that fulfills security and protection requirements without operating entire system.
 - 2. Install lighting for Project identification sign.

END OF SECTION 260140

SECTION 260150 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 26 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; and comparable products.
- B. Related Requirements:
 - 1. Section 260105 "Substitution Procedures" for requests for substitutions.

1.3 DEFINITIONS

- A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.
 - 1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature that is current as of date of the Contract Documents.
 - 2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.
 - 3. Comparable Product: Product that is demonstrated and approved through submittal process to have the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.
- B. Basis-of-Design Product Specification: A specification in which a specific manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation, to establish the significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics for purposes of evaluating comparable products of additional manufacturers named in the specification.

1.4 ACTION SUBMITTALS

- A. Comparable Product Requests: Submit request for consideration of each comparable product. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 - 1. Include data to indicate compliance with the requirements specified in "Comparable Products" Article.
 - 2. Engineer's Action: If necessary, Engineer will request additional information or documentation for evaluation within one week of receipt of a comparable product request. Engineer will notify Contractor of approval or rejection of proposed comparable product request within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.
 - a. Form of Approval: As specified in Section 260120 "Submittal Procedures."
 - b. Use product specified if Engineer does not issue a decision on use of a comparable product request within time allocated.
- B. Basis-of-Design Product Specification Submittal: Comply with requirements in Section 260120 "Submittal Procedures." Show compliance with requirements.

1.5 QUALITY ASSURANCE

- A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.
 - 1. Each contractor is responsible for providing products and construction methods compatible with products and construction methods of other contractors.
 - 2. If a dispute arises between contractors over concurrently selectable but incompatible products, Engineer will determine which products shall be used.

1.6 PRODUCT DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.
- B. Delivery and Handling:
 - 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
 - 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
 - 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.

- 4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.
- C. Storage:
 - 1. Store products to allow for inspection and measurement of quantity or counting of units.
 - 2. Store materials in a manner that will not endanger Project structure.
 - 3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
 - 4. Protect foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
 - 5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
 - 6. Protect stored products from damage and liquids from freezing.
 - 7. Provide a secure location and enclosure at Project site for storage of materials and equipment. Coordinate location with Owner.

1.7 PRODUCT WARRANTIES

- A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.
 - 1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
 - 2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.
- B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.
 - 1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
 - 2. Specified Form: When specified forms are included with the Specifications, prepare a written document using indicated form properly executed.
 - 3. See other Sections for specific content requirements and particular requirements for submitting special warranties.

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

- A. General Product Requirements: Provide products that comply with the Contract Documents, are undamaged and, unless otherwise indicated, are new at time of installation.
 - 1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.

- 2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.
- 3. Owner reserves the right to limit selection to products with warranties not in conflict with requirements of the Contract Documents.
- 4. Where products are accompanied by the term "as selected," Engineer will make selection.
- 5. Descriptive, performance, and reference standard requirements in the Specifications establish salient characteristics of products.
- 6. Or Equal: For products specified by name and accompanied by the term "or equal," or "or approved equal," or "or approved," comply with requirements in "Comparable Products" Article to obtain approval for use of an unnamed product.
- B. Product Selection Procedures:
 - 1. Product: Where Specifications name a single manufacturer and product, provide the named product that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
 - 2. Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
 - 3. Products:
 - a. Restricted List: Where Specifications include a list of names of both manufacturers and products, provide one of the products listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered unless otherwise indicated.
 - b. Nonrestricted List: Where Specifications include a list of names of both available manufacturers and products, provide one of the products listed, or an unnamed product, that complies with requirements. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product.
 - 4. Manufacturers:
 - a. Restricted List: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered unless otherwise indicated.
 - b. Nonrestricted List: Where Specifications include a list of available manufacturers, provide a product by one of the manufacturers listed, or a product by an unnamed manufacturer, that complies with requirements. Comply with requirements in "Comparable Products" Article for consideration of an unnamed manufacturer's product.
 - 5. Basis-of-Design Product: Where Specifications name a product, or refer to a product indicated on Drawings, and include a list of manufacturers, provide the specified or indicated product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product by one of the other named manufacturers.

C. Visual Selection Specification: Where Specifications include the phrase "as selected by Engineer from manufacturer's full range" or similar phrase, select a product that complies with requirements. Engineer will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

2.2 COMPARABLE PRODUCTS

- A. Conditions for Consideration: Engineer will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Engineer may return requests without action, except to record noncompliance with these requirements:
 - 1. Evidence that the proposed product does not require revisions to the Contract Documents, that it is consistent with the Contract Documents and will produce the indicated results, and that it is compatible with other portions of the Work.
 - 2. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.
 - 3. Evidence that proposed product provides specified warranty.
 - 4. List of similar installations for completed projects with project names and addresses and names and addresses of engineers and owners, if requested.
 - 5. Samples, if requested.

PART 3 - EXECUTION (Not Used)

END OF SECTION 260150

This Page Left Intentionally Blank

SECTION 260160 - EXECUTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 26 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:
 - 1. Installation of the Work.
 - 2. Cutting and patching.
 - 3. Coordination of Owner-installed products.
 - 4. Progress cleaning.
 - 5. Starting and adjusting.
 - 6. Protection of installed construction.
 - 7. Correction of the Work.

1.3 DEFINITIONS

- A. Cutting: Removal of in-place construction necessary to permit installation or performance of other work.
- B. Patching: Fitting and repair work required to restore construction to original conditions after installation of other work.

1.4 QUALITY ASSURANCE

- A. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.
 - 1. Structural Elements: When cutting and patching structural elements, notify Engineer of locations and details of cutting and await directions from Engineer before proceeding. Shore, brace, and support structural elements during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection
 - 2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety. Operational elements include the following:

- a. Primary operational systems and equipment.
- b. Fire separation assemblies.
- c. Air or smoke barriers.
- d. Fire-suppression systems.
- e. Mechanical systems piping and ducts.
- f. Control systems.
- g. Communication systems.
- h. Fire-detection and -alarm systems.
- i. Conveying systems.
- j. Electrical wiring systems.
- k. Operating systems of special construction.
- 3. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety. Other construction elements include but are not limited to the following:
 - a. Water, moisture, or vapor barriers.
 - b. Membranes and flashings.
 - c. Exterior curtain-wall construction.
 - d. Sprayed fire-resistive material.
 - e. Equipment supports.
 - f. Piping, ductwork, vessels, and equipment.
 - g. Noise- and vibration-control elements and systems.
- 4. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Engineer's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.
- B. Manufacturer's Installation Instructions: Obtain and maintain on-site manufacturer's written recommendations and instructions for installation of products and equipment.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. General: Comply with requirements specified in other Sections.
- B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.
 - 1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Engineer for the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Existing Conditions: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning sitework, investigate and verify the existence and location of underground utilities, mechanical and electrical systems, and other construction affecting the Work.
 - 1. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, and water-service piping; underground electrical services, and other utilities. Note all information on As-Built prints, whether new or existing.
 - 2. Furnish location data for work related to Project that must be performed by public utilities serving Project site.
- B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.
 - 1. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.
 - 2. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.
 - 3. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.
- C. Written Report: Where a written report listing conditions detrimental to performance of the Work is required by other Sections, include the following:
 - 1. Description of the Work.
 - 2. List of detrimental conditions, including substrates.
 - 3. List of unacceptable installation tolerances.
 - 4. Recommended corrections.
- D. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Existing Utility Information: Furnish information to local utility and Owner that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction.
- B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before

fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

- C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.
- D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of Contractor, submit a request for information to Engineer.

3.3 INSTALLATION

- A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 - 1. Make vertical work plumb and make horizontal work level.
 - 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 - 3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.
 - 4. Maintain minimum headroom clearance of 96 inches (2440 mm) in occupied spaces and 90 inches (2300 mm) in unoccupied spaces.
- B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.
- C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.
- D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.
- E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.
- F. Tools and Equipment: Do not use tools or equipment that produce harmful noise levels.
- G. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.
- H. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.
 - 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Engineer.
 - 2. Allow for building movement, including thermal expansion and contraction.

- 3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.
- I. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.
- J. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.

3.4 CUTTING AND PATCHING

- A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.
 - 1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.
- B. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.
- C. Temporary Support: Provide temporary support of work to be cut.
- D. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.
- E. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to minimize interruption to occupied areas.
- F. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.
 - 1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 - 2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
 - 3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
 - 4. Excavating and Backfilling: Comply with requirements in applicable Sections where required by cutting and patching operations.
 - 5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.

- 6. Proceed with patching after construction operations requiring cutting are complete.
- G. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.
 - 1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.
 - 2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.
 - a. Clean piping, conduit, and similar features before applying paint or other finishing materials.
 - b. Restore damaged pipe covering to its original condition.
 - 3. Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.
 - a. Where patching occurs in a painted surface, prepare substrate and apply primer and intermediate paint coats appropriate for substrate over the patch, and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.
 - 4. Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.
 - 5. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weather tight condition and ensures thermal and moisture integrity of building enclosure.
- H. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.5 OWNER-INSTALLED PRODUCTS

A. Coordination: Coordinate construction and operations of the Work with work performed by Owner's construction personnel.

3.6 PROGRESS CLEANING

- A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.
 - 1. Comply with requirements in NFPA 241 for removal of combustible waste materials and debris.
- 2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F (27 deg C).
- 3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.
 - a. Use containers intended for holding waste materials of type to be stored.
- B. Site: Maintain Project site free of waste materials and debris.
- C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.
 - 1. Remove liquid spills promptly.
 - 2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.
- D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.
- E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.
- F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.
- G. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways.
- H. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.
- I. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.
- J. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.7 STARTING AND ADJUSTING

- A. Coordinate startup and adjusting of equipment and operating components with requirements in Section 019113 "General Commissioning Requirements."
- B. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.
- C. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.

- D. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- E. Manufacturer's Field Service: Comply with qualification requirements in Section 260130 "Quality Requirements."

3.8 PROTECTION OF INSTALLED CONSTRUCTION

- A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.
- B. Comply with manufacturer's written instructions for temperature and relative humidity.

END OF SECTION 260160

SECTION 260170 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 26 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 - 1. Operation and maintenance documentation directory.
 - 2. Operation manuals for systems, subsystems, and equipment.
 - 3. Product maintenance manuals.
 - 4. Systems and equipment maintenance manuals.
- B. Related Requirements:
 - 1. Section 260120 "Submittal Procedures" for submitting copies of submittals for operation and maintenance manuals.
 - 2. Section 019113 "General Commissioning Requirements" for verification and compilation of data into operation and maintenance manuals.

1.3 DEFINITIONS

- A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.
- B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 CLOSEOUT SUBMITTALS

- A. Manual Content: Operations and maintenance manual content is specified in individual Specification Sections to be reviewed at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.
 - 1. Engineer will comment on whether content of operations and maintenance submittals are acceptable.
 - 2. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.
- B. Format: Submit operations and maintenance manuals in the following format:

- 1. PDF electronic file. Assemble each manual into a composite electronically indexed file. Submit on digital media acceptable to Engineer.
 - a. Name each indexed document file in composite electronic index with applicable item name. Include a complete electronically linked operation and maintenance directory.
 - b. Enable inserted reviewer comments on draft submittals.
- C. Initial Manual Submittal: Submit draft copy of each manual at least 60 days before commencing demonstration and training. Engineer will comment on whether general scope and content of manual are acceptable.
- D. Final Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Engineer will return copy with comments.
 - 1. Correct or revise each manual to comply with Engineer's comments. Submit copies of each corrected manual prior to commencing demonstration and training.

PART 2 - PRODUCTS

2.1 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY

- A. Directory: Prepare a single, comprehensive directory of emergency, operation, and maintenance data and materials, listing items and their location to facilitate ready access to desired information. Include a section in the directory for each of the following:
 - 1. List of documents.
 - 2. List of systems.
 - 3. List of equipment.
 - 4. Table of contents.
- B. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.
- C. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list.
- D. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.
- E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents.

2.2 REQUIREMENTS FOR OPERATION, AND MAINTENANCE MANUALS

- A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:
 - 1. Title page.
 - 2. Table of contents.
 - 3. Manual contents.
- B. Title Page: Include the following information as applicable:
 - 1. Subject matter included in manual.
 - 2. Name and address of Project.
 - 3. Name and address of Owner.
 - 4. Date of submittal.
 - 5. Name and contact information for Contractor.
 - 6. Name and contact information for Construction Manager.
 - 7. Name and contact information for Engineer.
 - 8. Name and contact information for Commissioning Authority.
 - 9. Names and contact information for major consultants to the Engineer that designed the systems contained in the manuals.
 - 10. Cross-reference to related systems in other operation and maintenance manuals.
- C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
 - 1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.
- D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.
- E. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.
 - 1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
 - 2. File Names and Bookmarks: Enable bookmarking of individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.

2.3 OPERATION MANUALS

- A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 - 1. System, subsystem, and equipment descriptions. Use designations for systems and equipment indicated on Contract Documents.
 - 2. Performance and design criteria if Contractor has delegated design responsibility.
 - 3. Operating standards.
 - 4. Operating procedures.
 - 5. Operating logs.
 - 6. Wiring diagrams.
 - 7. Control diagrams.
 - 8. Piped system diagrams.
 - 9. Precautions against improper use.
 - 10. License requirements including inspection and renewal dates.
- B. Descriptions: Include the following:
 - 1. Product name and model number. Use designations for products indicated on Contract Documents.
 - 2. Manufacturer's name.
 - 3. Equipment identification with serial number of each component.
 - 4. Equipment function.
 - 5. Operating characteristics.
 - 6. Limiting conditions.
 - 7. Performance curves.
 - 8. Engineering data and tests.
 - 9. Complete nomenclature and number of replacement parts.
- C. Operating Procedures: Include the following, as applicable:
 - 1. Startup procedures.
 - 2. Equipment or system break-in procedures.
 - 3. Routine and normal operating instructions.
 - 4. Regulation and control procedures.
 - 5. Instructions on stopping.
 - 6. Normal shutdown instructions.
 - 7. Seasonal and weekend operating instructions.
 - 8. Required sequences for electric or electronic systems.
 - 9. Special operating instructions and procedures.
- D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

2.4 PRODUCT MAINTENANCE MANUALS

A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

- B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.
- C. Product Information: Include the following, as applicable:
 - 1. Product name and model number.
 - 2. Manufacturer's name.
 - 3. Color, pattern, and texture.
 - 4. Material and chemical composition.
 - 5. Reordering information for specially manufactured products.
- D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 - 1. Inspection procedures.
 - 2. Types of cleaning agents to be used and methods of cleaning.
 - 3. List of cleaning agents and methods of cleaning detrimental to product.
 - 4. Schedule for routine cleaning and maintenance.
 - 5. Repair instructions.
- E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.
- F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

2.5 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

- A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.
- B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.
- C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:
 - 1. Standard maintenance instructions and bulletins.
 - 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 - 3. Identification and nomenclature of parts and components.

- 4. List of items recommended to be stocked as spare parts.
- D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 - 1. Test and inspection instructions.
 - 2. Troubleshooting guide.
 - 3. Precautions against improper maintenance.
 - 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - 5. Aligning, adjusting, and checking instructions.
 - 6. Demonstration and training video recording, if available.
- E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
 - 1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
 - 2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.
- F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.
- G. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.
- H. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

- A. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.
- B. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
 - 1. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.
- C. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a

tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.

- 1. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.
- D. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.
 - 1. Do not use original project record documents as part of operation and maintenance manuals.
 - 2. Comply with requirements of newly prepared record Drawings in Section 260180 "Project Record Documents."

END OF SECTION 260170

This Page Left Intentionally Blank

SECTION 260180 - PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 26Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for project record documents, including the following:
 - 1. Record Drawings.
 - 2. Record Specifications.
 - 3. Record Product Data.
 - 4. Miscellaneous record submittals.
- B. Related Requirements:
 - 1. Section 260170 "Operation and Maintenance Data" for operation and maintenance manual requirements.

1.3 CLOSEOUT SUBMITTALS

- A. Record Drawings: Comply with the following:
 1. Number of Copies: Submit copies of record Drawings as follows:
 - a. Initial Submittal:
 - 1) Submit PDF electronic files of scanned record prints and one set of prints.
 - 2) Engineer will indicate whether general scope of changes, additional information recorded, and quality of drafting are acceptable.
 - b. Final Submittal:
 - 1) Submit PDF electronic files of scanned record prints and three set(s) of prints.
 - 2) Print each drawing, whether or not changes and additional information were recorded.
- B. Record Specifications: Submit annotated PDF electronic files of Project's Specifications, including addenda and contract modifications.
- C. Record Product Data: Submit annotated PDF electronic files and directories of each submittal.

D. Miscellaneous Record Submittals: See other Specification Sections for miscellaneous recordkeeping requirements and submittals in connection with various construction activities. Submit annotated PDF electronic files and directories of each submittal.

PART 2 - PRODUCTS

2.1 RECORD DRAWINGS

- A. Record Prints: Maintain one set of marked-up paper copies of the Contract Drawings and Shop Drawings, incorporating new and revised drawings as modifications are issued.
 - 1. Preparation: Mark record prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.
 - a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 - b. Accurately record information in an acceptable drawing technique.
 - c. Record data as soon as possible after obtaining it.
 - d. Record and check the markup before enclosing concealed installations.
 - e. Cross-reference record prints to corresponding archive photographic documentation.
 - 2. Content: Types of items requiring marking include, but are not limited to, the following:
 - a. Dimensional changes to Drawings.
 - b. Revisions to details shown on Drawings.
 - c. Depths of foundations below first floor.
 - d. Locations and depths of underground utilities.
 - e. Revisions to routing of piping and conduits.
 - f. Revisions to electrical circuitry.
 - g. Actual equipment locations.
 - h. Locations of concealed internal utilities.
 - i. Changes made by Change Order or Construction Change Directive.
 - j. Changes made following Engineer's written orders.
 - k. Details not on the original Contract Drawings.
 - 1. Field records for variable and concealed conditions.
 - m. Record information on the Work that is shown only schematically.
 - 3. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.
 - 4. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.
 - 5. Mark important additional information that was either shown schematically or omitted from original Drawings.
 - 6. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.

- B. Record Digital Data Files: Immediately before inspection for Certificate of Substantial Completion, review marked-up record prints with Engineer. When authorized, prepare a full set of corrected digital data files of the Contract Drawings, as follows:
 - 1. Format: Same digital data software program, version, and operating system as the original Contract Drawings.
 - 2. Incorporate changes and additional information previously marked on record prints. Delete, redraw, and add details and notations where applicable.
 - 3. Refer instances of uncertainty to Engineer for resolution.
 - 4. Engineer will furnish Contractor one set of digital data files of the Contract Drawings for use in recording information.
 - a. See Section 260120 "Submittal Procedures" for requirements related to use of Engineer's digital data files.
 - b. Engineer will provide data file layer information. Record markups in separate layers.
- C. Format: Identify and date each record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.
 - 1. Record Prints: Organize record prints and newly prepared record Drawings into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.
 - 2. Format: Annotated PDF electronic file.
 - 3. Record Digital Data Files: Organize digital data information into separate electronic files that correspond to each sheet of the Contract Drawings. Name each file with the sheet identification. Include identification in each digital data file.
 - 4. Identification: As follows:
 - a. Project name.
 - b. Date.
 - c. Designation "PROJECT RECORD DRAWINGS."
 - d. Name of Engineer.
 - e. Name of Contractor.

2.2 RECORD SPECIFICATIONS

- A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected.
 - 3. Record the name of manufacturer, supplier, Installer, and other information necessary to provide a record of selections made.
 - 4. For each principal product, indicate whether record Product Data has been submitted in operation and maintenance manuals instead of submitted as record Product Data.
 - 5. Note related Change Orders, record Product Data, and record Drawings where applicable.

B. Format: Submit record Specifications as annotated PDF electronic file .

2.3 RECORD PRODUCT DATA

- A. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Include significant changes in the product delivered to Project site and changes in manufacturer's written instructions for installation.
 - 3. Note related Change Orders, record Specifications, and record Drawings where applicable.
- B. Format: Submit record Product Data as annotated PDF electronic file .
 - 1. Include record Product Data directory organized by Specification Section number and title, electronically linked to each item of record Product Data.

2.4 MISCELLANEOUS RECORD SUBMITTALS

- A. Assemble miscellaneous records required by other Specification Sections for miscellaneous record keeping and submittal in connection with actual performance of the Work. Bind or file miscellaneous records and identify each, ready for continued use and reference.
- B. Format: Submit miscellaneous record submittals as PDF electronic file .
 - 1. Include miscellaneous record submittals directory organized by Specification Section number and title, electronically linked to each item of miscellaneous record submittals.

PART 3 - EXECUTION

3.1 RECORDING AND MAINTENANCE

- A. Recording: Maintain one copy of each submittal during the construction period for project record document purposes. Post changes and revisions to project record documents as they occur; do not wait until end of Project.
- B. Maintenance of Record Documents and Samples: Store record documents and Samples in the field office apart from the Contract Documents used for construction. Do not use project record documents for construction purposes. Maintain record documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to project record documents for Engineer's reference during normal working hours.

END OF SECTION 260180

SECTION 260190 - DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for instructing Owner's personnel, including the following:
 - 1. Demonstration of operation of systems, subsystems, and equipment.
 - 2. Training in operation and maintenance of systems, subsystems, and equipment.
 - 3. Demonstration and training video recordings.

1.3 INFORMATIONAL SUBMITTALS

- A. Instruction Program: Submit outline of instructional program for demonstration and training, including a list of training modules and a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module.
 - 1. Indicate proposed training modules using manufacturer-produced demonstration and training video recordings for systems, equipment, and products in lieu of video recording of live instructional module.
- B. Attendance Record: For each training module, submit list of participants and length of instruction time.

1.4 CLOSEOUT SUBMITTALS

- A. Demonstration and Training Video Recordings: Submit two copies within seven days of end of each training module.
 - 1. Identification: On each copy, provide an applied label with the following information:
 - a. Name of Project.
 - b. Name and address of videographer.
 - c. Name of Engineer.
 - d. Name of Construction Manager.
 - e. Name of Contractor.
 - f. Date of video recording.

2. At completion of training, submit complete training manual(s) for Owner's use in PDF electronic file format on flash drive.

1.5 COORDINATION

- A. Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations and to ensure availability of Owner's personnel.
- B. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
- C. Coordinate content of training modules with content of approved operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by Engineer.

PART 2 - PRODUCTS

2.1 INSTRUCTION PROGRAM

- A. Program Structure: Develop an instruction program that includes individual training modules for each system and for equipment not part of a system, as required by individual Specification Sections.
- B. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following as applicable to the system, equipment, or component:
 - 1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Performance and design criteria if Contractor is delegated design responsibility.
 - c. Operating standards.
 - d. Regulatory requirements.
 - e. Equipment function.
 - f. Operating characteristics.
 - g. Limiting conditions.
 - h. Performance curves.
 - 2. Documentation: Review the following items in detail:
 - a. Operations manuals.
 - b. Maintenance manuals.
 - c. Project record documents.
 - d. Identification systems.
 - e. Warranties and bonds.
 - f. Maintenance service agreements and similar continuing commitments.
 - g. Instructions on meaning of warnings, trouble indications, and error messages.

- h. Instructions on stopping.
- i. Shutdown instructions.
- j. Operating instructions for conditions outside of normal operating limits.
- k. Sequences for electric or electronic systems.
- 1. Special operating instructions and procedures.
- 3. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.
 - c. Routine and normal operating instructions.
 - d. Regulation and control procedures.
 - e. Control sequences.
 - f. Safety procedures.
 - g. Instructions on stopping.
 - h. Normal shutdown instructions.
 - i. Operating procedures for emergencies.
 - j. Operating procedures for system, subsystem, or equipment failure.
 - k. Seasonal and weekend operating instructions.
 - 1. Required sequences for electric or electronic systems.
 - m. Special operating instructions and procedures.
- 4. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.
 - c. Noise and vibration adjustments.
 - d. Economy and efficiency adjustments.
- 5. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 6. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.
 - g. Instruction on use of special tools.
- 7. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.

e. Review of spare parts needed for operation and maintenance.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a training manual organized in coordination with requirements in Section 260170 "Operation and Maintenance Data."
- B. Set up instructional equipment at instruction location.

3.2 INSTRUCTION

- A. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
- B. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.
 - 1. Schedule training with Owner, through Engineer, with at least seven days' advance notice.
- C. Training Location and Reference Material: Conduct training on-site in the completed and fully operational facility using the actual equipment in-place. Conduct training using final operation and maintenance data submittals.
- D. Cleanup: Collect used and leftover educational materials and give to Owner. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

3.3 DEMONSTRATION AND TRAINING VIDEO RECORDINGS

- A. General: Engage a qualified commercial videographer to record demonstration and training video recordings. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice.
 - 1. At beginning of each training module, record each chart containing learning objective and lesson outline.
- B. Video: Provide minimum 640 x 480 video resolution converted to .mp4 format file type , on electronic media.
 - 1. Electronic Media: Read-only format compact disc acceptable to Owner, with commercial-grade graphic label.
 - 2. File Hierarchy: Organize folder structure and file locations according to project manual table of contents. Provide complete screen-based menu.

- 3. File Names: Utilize file names based upon name of equipment generally described in video segment, as identified in Project specifications.
- C. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to adequately cover area of demonstration and training. Display continuous running time.
 - 1. Film training session(s) in segments not to exceed 15 minutes.
 - a. Produce segments to present a single significant piece of equipment per segment.
 - b. Organize segments with multiple pieces of equipment to follow order of Project Manual table of contents.
 - c. Where a training session on a particular piece of equipment exceeds 15 minutes, stop filming and pause training session. Begin training session again upon commencement of new filming segment.
- D. Light Levels: Verify light levels are adequate to properly light equipment. Verify equipment markings are clearly visible prior to recording.
 - 1. Furnish additional portable lighting as required.
- E. Preproduced Video Recordings: Provide video recordings used as a component of training modules in same format as recordings of live training.

END OF SECTION 260190

This Page Left Intentionally Blank

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Connectors, splices, and terminations rated 600 V and less.

1.3 DEFINITIONS

- A. EPDM: Ethylene-propylene-dieneterpolymer rubber.
- B. NBR: Acrylonitrile-butadiene rubber.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Alcan Products Corporation; Alcan Cable Division</u>.
 - 2. <u>American Insulated Wire Corp.; a Leviton Company</u>.

- 3. <u>General Cable Corporation</u>.
- 4. <u>Senator Wire & Cable Company</u>.
- 5. <u>Southwire Company</u>.
- 6. Other Manufacturer approved prior to bid.
- B. Copper Conductors: Comply with NEMA WC 70.
- C. Conductor Insulation: Comply with NEMA WC 70 for Types THW, THHN-THWN and XHHW.

2.2 CONNECTORS AND SPLICES

- A. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems, Inc.
 - 2. <u>Hubbell Power Systems, Inc.</u>
 - 3. O-Z/Gedney; EGS Electrical Group LLC.
 - 4. <u>3M; Electrical Products Division</u>.
 - 5. <u>Tyco Electronics Corp</u>.
 - 6. Other Manufacturer approved prior to bid.
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Service Entrance: Type THWN, single conductors in raceway.
- B. Exposed Feeders: Type THHN-THWN, single conductors in raceway.
- C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN-THWN, single conductors in raceway .
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

- E. Exposed Branch Circuits, Including in Crawlspaces: Type THHN-THWN, single conductors in raceway.
- F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway .
- G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.
- H. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainlesssteel, wire-mesh, and strain relief device at terminations to suit application.
- I. Class 1 Control Circuits: Type THHN-THWN, in raceway.
- J. Class 2 Control Circuits: Type THHN-THWN, in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.
- B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- E. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."
- F. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B. The contractor shall prepare a table listing the manufacturer's published torque tightening values and the installed torque tightening values as measured during installation for each feeder. The contractor shall submit this table for the Engineer's review at the time of substantial completion. The contractor shall take any corrective action required by the Engineer to ensure torque tightening values match the manufacturer's published values.
- B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm) of slack.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.7 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors, and conductors feeding the following critical equipment and services for compliance with requirements.
 - a. Chiller
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in cables and conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. The contractor shall ensure that each cable and conductor tested is under a minimum of 50% of the connected load indicated on the current construction documents. Any cables or conductors not meeting this requirement should be listed in the submitted test reports.
 - a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion.
 - b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
- C. Test Reports: Prepare a written report to record the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.

- 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- D. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 260519

This Page Left Intentionally Blank

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes: Grounding systems and equipment.
- B. Section includes grounding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

- A. Informational Submittals: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 - 1. Test wells.
 - 2. Ground rods.
 - 3. Grounding arrangements and connections for separately derived systems.
- B. Qualification Data: For qualified testing agency and testing agency's field supervisor.
- C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 260170 "Operation and Maintenance Data," include the following:
 - 1. Instructions for periodic testing and inspection of grounding features at test wells and grounding connections for separately derived systems based on NETA MTS.
 - a. Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.

b. Include recommended testing intervals.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

- A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
- C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches (6.3 by 100 mm) in cross section, with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V. Lexan or PVC, impulse tested at 5000 V.

2.2 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 - 1. Pipe Connectors: Clamp type, sized for pipe.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- D. Bus-bar Connectors: Mechanical type, cast silicon bronze, solderless compression -type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad Stainless steel, sectional type; 3/4 inch by 10 feet (19 mm by 3 m).

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 10 AWG and smaller, and stranded conductors for No. 8 AWG and larger unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 4/0 AWG minimum.
 - 1. Bury at least 24 inches (600 mm) below grade.
 - 2. Duct-Bank Grounding Conductor: Encase in cast in place duct bank, centered 3" below top of duct bank.
- C. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 - 1. Install bus on insulated spacers 2 inches (50 mm) minimum from wall, 6 inches (150 mm) above finished floor unless otherwise indicated.
 - 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down to specified height above floor; connect to horizontal bus.
- D. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded or listed irreversible compression connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Bolted connectors.

3.2 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

- A. Comply with IEEE C2 grounding requirements.
- B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches (100 mm) will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches (50 mm) above to 6 inches (150 mm) below concrete. Seal floor opening with waterproof, nonshrink grout.
- C. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-

copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches (150 mm) from the foundation.

3.3 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
 - 2. Lighting circuits.
 - 3. Receptacle circuits.
 - 4. Single-phase motor and appliance branch circuits.
 - 5. Three-phase motor and appliance branch circuits.
 - 6. Flexible raceway runs.
 - 7. Computer and Rack-Mounted Electronic Equipment Circuits: Install insulated equipment grounding conductor in branch-circuit runs from equipment-area power panels and power-distribution units.
- C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to ductmounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- E. Signal and Communication Equipment: In addition to grounding and bonding required by NFPA 70, provide a separate grounding system complying with requirements in TIA/ATIS J-STD-607-A.
 - 1. For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
 - 2. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a 1/4-by-4-by-12-inch (6.3-by-100-by-300-mm) grounding bus.
 - 3. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

3.4 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Rods: Drive rods until tops are 2 inches (50 mm) below finished floor or final grade unless otherwise indicated.

- 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
- 2. For grounding electrode system, install at least three rods spaced two-rod lengths from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.
- C. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Section 260543 "Underground Ducts and Raceways for Electrical Systems," and shall be at least 12 inches (300 mm) deep, with cover.
 - 1. Test Wells: Install at least one test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.
- D. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded or irreversible compression connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.
- E. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
- F. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.

3.5 LABELING

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems" for instruction signs. The label or its text shall be green.
- B. Install labels at the telecommunications bonding conductor and grounding equalizer and at the grounding electrode conductor where exposed.

1. Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells , and at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
 - 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
- E. Grounding system will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.
- G. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and less: 5 ohms.
 - 2. Substations and Pad-Mounted Equipment: 5 ohms.
 - 3. Manhole Grounds: 10 ohms.
 - 4. Ground Bar: 5 ohms.

H. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance. Contractor shall drive a minimum of three additional ground rods at locations specified by Engineer at no additional cost.

END OF SECTION 260526

This Page Left Intentionally Blank

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. IMC: Intermediate metal conduit.
- C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

A. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.5 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel slotted support systems.
 - 2. Nonmetallic slotted support systems.
 - 3. Two-Hole Conduit Straps

1.6 QUALITY ASSURANCE

A. Comply with NFPA 70.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified together with concrete Specifications.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Allied Tube & Conduit</u>.
 - b. <u>Cooper B-Line, Inc.; a division of Cooper Industries</u>.
 - c. <u>ERICO International Corporation</u>.
 - d. <u>GS Metals Corp</u>.
 - e. <u>Thomas & Betts Corporation</u>.
 - f. <u>Unistrut; Tyco International, Ltd</u>.
 - g. <u>Wesanco, Inc</u>.
 - 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 - 3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 - 4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 - 5. Channel Dimensions: Selected for applicable load criteria.
- B. Raceway and Cable Supports: As described in NECA 1 and NECA 101, hot dipped galvanized steel, 2 hole pipe straps, or other approved means.
- C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
- E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
- 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) <u>Hilti Inc</u>.
 - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) <u>Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.</u>
- 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) <u>Cooper B-Line, Inc.; a division of Cooper Industries</u>.
 - 2) <u>Empire Tool and Manufacturing Co., Inc.</u>
 - 3) <u>Hilti Inc</u>.
 - 4) <u>ITW Ramset/Red Head; a division of Illinois Tool Works, Inc</u>.
 - 5) <u>MKT Fastening, LLC</u>.
- 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
- 6. Toggle Bolts: All-steel springhead type.
- 7. Hanger Rods: Threaded steel.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. All exposed conduits shall supported with hot dipped galvanized steel 2 hole pipe straps
- B. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.
- C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.
- D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps .

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- **B.** Use 3000-psi (20.7-MPa) , 28-day compressive-strength concrete. Anchor equipment to concrete base.
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529

This Page Left Intentionally Blank

SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits, tubing, and fittings.
 - 2. Nonmetal conduits, tubing, and fittings.
 - 3. Metal wireways and auxiliary gutters.
 - 4. Surface raceways.
 - 5. Boxes, enclosures, and cabinets.
 - 6. Handholes and boxes for exterior underground cabling.
- B. Related Requirements:
 - 1. Section 260543 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.
 - 2. Section 260553 "Identification for Electrical Systems" for color coding requirements for raceway, boxes and other components.

1.3 DEFINITIONS

- A. GRC: Galvanized rigid steel conduit.
- B. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

- A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

- A. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. AFC Cable Systems, Inc.
 - 2. <u>Allied Tube & Conduit; a Tyco International Ltd. Co.</u>
 - 3. <u>Anamet Electrical, Inc</u>.
 - 4. <u>Electri-Flex Company</u>.
 - 5. O-Z/Gedney; a brand of EGS Electrical Group.
 - 6. Picoma Industries, a subsidiary of Mueller Water Products, Inc.
 - 7. <u>Republic Conduit</u>.
 - 8. <u>Robroy Industries</u>.
 - 9. Southwire Company.
 - 10. Thomas & Betts Corporation.
 - 11. Western Tube and Conduit Corporation.
 - 12. Wheatland Tube Company; a division of John Maneely Company.
- B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. GRC: Comply with ANSI C80.1 and UL 6.
- D. IMC: Comply with ANSI C80.6 and UL 1242.
- E. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit .
 - 1. Comply with NEMA RN 1.
 - 2. Coating Thickness: 0.040 inch (1 mm), minimum.
- F. EMT: Comply with ANSI C80.3 and UL 797.
- G. FMC: Comply with UL 1; zinc-coated steel .
- H. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- I. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.1. Fittings for EMT:
 - a. Material: Steel, Cadmiuim plated or hot-dipped galvanized. .
 - b. Type: Setscrew.
 - 2. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 - 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.

J. Joint Compound for IMC, GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

- A. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. AFC Cable Systems, Inc.
 - 2. <u>Anamet Electrical, Inc</u>.
 - 3. <u>Arnco Corporation</u>.
 - 4. <u>CANTEX Inc</u>.
 - 5. <u>CertainTeed Corp</u>.
 - 6. <u>Condux International, Inc</u>.
 - 7. <u>Electri-Flex Company</u>.
 - 8. <u>Kraloy</u>.
 - 9. Lamson & Sessions; Carlon Electrical Products.
 - 10. <u>Niedax-Kleinhuis USA, Inc</u>.
 - 11. <u>RACO; a Hubbell company</u>.
 - 12. <u>Thomas & Betts Corporation</u>.
- B. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. RNC: Type EPC-40-PVC , complying with NEMA TC 2 and UL 651 unless otherwise indicated.
- D. LFNC: Comply with UL 1660.
- E. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.
- F. Fittings for LFNC: Comply with UL 514B.
- G. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following :
 - 1. <u>Cooper B-Line, Inc</u>.
 - 2. <u>Hoffman; a Pentair company</u>.
 - 3. <u>Mono-Systems, Inc</u>.
 - 4. <u>Square D; a brand of Schneider Electric</u>.

- B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 or Type 3R unless otherwise indicated, and sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Screw-cover type unless otherwise indicated.
- E. Finish: Manufacturer's standard enamel finish.

2.4 BOXES, ENCLOSURES, AND CABINETS

- A. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following :
 - 1. <u>Adalet</u>.
 - 2. <u>Cooper Technologies Company; Cooper Crouse-Hinds</u>.
 - 3. EGS/Appleton Electric.
 - 4. Erickson Electrical Equipment Company.
 - 5. <u>FSR Inc</u>.
 - 6. <u>Hoffman; a Pentair company</u>.
 - 7. <u>Hubbell Incorporated; Killark Division</u>.
 - 8. <u>Kraloy</u>.
 - 9. <u>Milbank Manufacturing Co.</u>
 - 10. Mono-Systems, Inc.
 - 11. <u>O-Z/Gedney; a brand of EGS Electrical Group</u>.
 - 12. <u>RACO; a Hubbell Company</u>.
 - 13. <u>Robroy Industries</u>.
 - 14. <u>Spring City Electrical Manufacturing Company</u>.
 - 15. Stahlin Non-Metallic Enclosures; a division of Robroy Industries.
 - 16. <u>Thomas & Betts Corporation</u>.
 - 17. <u>Wiremold / Legrand</u>.
- B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- D. Metal Floor Boxes:
 - 1. Material: Cast metal .
 - 2. Type: Fully adjustable .
 - 3. Shape: Rectangular.
 - 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- E. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb (23 kg). Outlet boxes designed for attachment of luminaires weighing more than 50 lb (23 kg) shall be listed and marked for the maximum allowable weight.
- F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- G. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- H. Device Box Dimensions: [4 inches by 2-1/8 inches by 2-1/8 inches deep (100 mm by 60 mm by 60 mm deep)]is sufficient unless noted otherwise. Communication terminal outlet boxes shall be 4 inches square by 2 1/8 inches deep. Junction boxes that house fire alarm, intercom, energy management system, or data systems shall by 6" square or larger.
- I. Gangable boxes are prohibited.
- J. Cabinets:
 - 1. NEMA 250, Type 1, Type 3R and Type 12 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.
 - 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.5 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. General Requirements for Handholes and Boxes:
 - 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 - 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. <u>Armorcast Products Company</u>.
 - b. <u>Carson Industries LLC</u>.
 - c. <u>CDR Systems Corporation; Hubbell Power Systems</u>.
 - d. <u>NewBasis</u>.
 - e. <u>Oldcastle Precast, Inc.; Christy Concrete Products</u>.
 - f. Synertech Moulded Products; a division of Oldcastle Precast, Inc.
 - 2. Standard: Comply with SCTE 77.

- 3. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
- 4. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
- 5. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- 6. Cover Legend: Molded lettering, "ELECTRIC.".
- 7. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
- 8. Handholes 12 Inches Wide by 24 Inches Long (300 mm Wide by 600 mm Long) and Larger: Have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.6 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

- A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Tests of materials shall be performed by an independent testing agency.
 - 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012 and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC or IMC .
 - 2. Concealed Conduit, Aboveground: GRC, IMC or EMT .
 - 3. Underground Conduit: RNC, Type EPC-40-PVC , direct buried or concrete encased as noted on drawings.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC .
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT .
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 3. Exposed and Subject to Severe Physical Damage: GRC or IMC. Raceway locations include the following:
 - a. Loading dock.
 - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 - c. Mechanical rooms.
 - d. Gymnasiums.

- e. Janitor's Closets.
- 4. Concealed in Ceilings and Interior Walls and Partitions: EMT .
- 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
- 6. Damp or Wet Locations: GRC or IMC.
- 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.
- C. Minimum Raceway Size: 3/4-inch (21-mm) trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 - 3. EMT: Use setscrew, steel fittings. Comply with NEMA FB 2.10.
 - 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
- E. Install surface raceways only where indicated on Drawings.
- F. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F (49 deg C).

3.2 INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- B. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal raceway runs above water and steam piping.
- C. Complete raceway installation before starting conductor installation.
- D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- E. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches (300 mm) of changes in direction.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

- H. Support conduit within 12 inches (300 mm)of enclosures to which attached. Support all exposed conduit with two hole pipe straps.
- I. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch (27-mm) trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot (3-m)intervals.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Arrange raceways to keep a minimum of 2 inches (50 mm) of concrete cover in all directions.
 - 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 - 5. Change from ENT to GRC or IMC before rising above floor.
- J. Stub-ups to Above Recessed Ceilings:
 - 1. Use EMT, IMC, or RMC for raceways.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
 - 3. Mark the junction box covers of below listed conduit systems with indelible marker:

a.	Fire Alarm	Red
b.	Intercom	White
c.	Building Management System (BAS)	Blue
d.	Instructional Data (TEL/DATA)	Green

- K. Junction boxes that house systems noted above 6' square or larger located outside under canopies or on vertical structures shall be identified with adhesive 1"x2" black micarta plates with ½" high letters.
- L. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- M. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.
- N. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- O. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch (35mm) trade size and insulated throat metal bushings on 1-1/2-inch (41-mm) trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- P. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- Q. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

- R. Cut conduit perpendicular to the length. For conduits 2-inch (53-mm) trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
- S. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- T. Surface Raceways:
 - 1. Install surface raceway with a minimum 2-inch (50-mm)radius control at bend points.
 - 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches (1200 mm) and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.
- U. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.
- V. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where an underground service raceway enters a building or structure.
 - 3. Where otherwise required by NFPA 70.
- W. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- X. Flexible Conduit Connections: Use a maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
- Y. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
- Z. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- AA. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- BB. Locate boxes so that cover or plate will not span different building finishes.

- CC. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- DD. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- EE. Set metal floor boxes level and flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

- A. Direct-Buried Conduit:
 - 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches (150 mm) in nominal diameter.
 - 2. Install backfill as specified in Section 312000 "Earth Moving."
 - 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches (300 mm) of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."
 - 4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
 - 5. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 6. Slope all conduits away from buildings. Provide handholes and boxes as required.

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch (25 mm) above finished grade, unless noted otherwise.
- D. Install handholes with bottom below frost line.
- E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables but short enough to preserve adequate working clearances in enclosure.

F. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 **PROTECTION**

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533

This Page Left Intentionally Blank

SECTION 260543 - UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Conduit, ducts, and duct accessories for direct-buried and concrete-encased duct banks, and in single duct runs.
 - 2. Handholes and boxes.

1.3 DEFINITION

A. RNC: Rigid nonmetallic conduit.

1.4 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Duct-bank materials, including separators and miscellaneous components.
 - 2. Ducts and conduits and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
 - 3. Accessories for handholes, boxes, and other utility structures.
 - 4. Warning tape.
- B. Shop Drawings for Precast or Factory-Fabricated Underground Utility Structures: Include plans, elevations, sections, details, attachments to other work, and accessories, including the following:
 - 1. Duct entry provisions, including locations and duct sizes.
 - 2. Reinforcement details.
 - 3. Frame and cover design and manhole frame support rings.
 - 4. Ladder details.
 - 5. Grounding details.
 - 6. Dimensioned locations of cable rack inserts, pulling-in and lifting irons, and sumps.
 - 7. Joint details.

1.5 INFORMATIONAL SUBMITTALS

- A. Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and underground structures.
 - 1. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.
- B. Comply with ANSI C2.
- C. Comply with NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver ducts to Project site with ends capped. Store nonmetallic ducts with supports to prevent bending, warping, and deforming.
- B. Store precast concrete and other factory-fabricated underground utility structures at Project site as recommended by manufacturer to prevent physical damage. Arrange so identification markings are visible.
- C. Lift and support precast concrete units only at designated lifting or supporting points.

1.8 PROJECT CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Architect, Construction Manager and Owner no fewer than seven days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Owner's written permission.

1.9 COORDINATION

- A. Coordinate layout and installation of ducts, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field.
- B. Coordinate elevations of ducts and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of ducts and duct banks as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations from those indicated as required to suit field conditions and to ensure that duct runs drain to manholes and handholes, and as approved by Architect.

PART 2 - PRODUCTS

2.1 CONDUIT

- A. Rigid Steel Conduit: Galvanized. Comply with ANSI C80.1.
- B. RNC: NEMA TC 2, Type EPC-40-PVC and Type EPC-80-PVC, UL 651, with matching fittings by same manufacturer as the conduit, complying with NEMA TC 3 and UL 514B.

2.2 PRECAST CONCRETE HANDHOLES AND BOXES

- A. Available Manufacturers: Provide product indicated on drawings. Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work if comparable include,:
 - 1. <u>Carder Concrete Products</u>.
 - 2. <u>Christy Concrete Products</u>.
 - 3. <u>Elmhurst-Chicago Stone Co</u>.
 - 4. Oldcastle Precast Group.
 - 5. Riverton Concrete Products; a division of Cretex Companies, Inc.
 - 6. <u>Utility Concrete Products, LLC</u>.
 - 7. <u>Utility Vault Co</u>.
 - 8. <u>Wausau Tile, Inc</u>.
- B. Comply with ASTM C 858 for design and manufacturing processes.
- C. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or box.
 - 1. Frame and Cover: Weatherproof steel frame, with steel cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.
 - 2. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 3. Cover Legend: Molded lettering, As indicated for each service.
 - 4. Configuration: Units shall be designed for flush burial and have open bottom, unless otherwise indicated.
 - 5. Extensions and Slabs: Designed to mate with bottom of enclosure. Same material as enclosure.
 - 6. Duct Entrances in Handhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
 - a. Type and size shall match fittings to duct or conduit to be terminated.
 - b. Fittings shall align with elevations of approaching ducts and be located near interior corners of handholes to facilitate racking of cable.
 - 7. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.3 SOURCE QUALITY CONTROL

- A. Test and inspect precast concrete utility structures according to ASTM C 1037.
- B. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of manholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Tests of materials shall be performed by a independent testing agency.
 - 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or the manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 UNDERGROUND DUCT APPLICATION

- A. Ducts for Electrical Cables over 600 V: RNC, NEMA Type EPC-40 -PVC, in concrete-encased duct bank, unless otherwise indicated.
- B. Ducts for Electrical Feeders 600 V and Less: RNC, NEMA Type EPC-40 -PVC, in directburied duct bank, unless otherwise indicated.

3.2 EARTHWORK

- A. Excavation and Backfill: Comply with Section 312000 "Earth Moving," but do not use heavyduty, hydraulic-operated, compaction equipment.
- B. Restore surface features at areas disturbed by excavation and reestablish original grades, unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
- C. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Section 329200 "Turf and Grasses" and Section 329300 "Plants."
- D. Cut and patch existing pavement in the path of underground ducts and utility structures according to Section 017329 "Cutting and Patching."

3.3 DUCT INSTALLATION

A. Slope: Pitch ducts a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope ducts from a high point in runs between two manholes to drain in both directions.

- B. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches (1220 mm), both horizontally and vertically, at other locations, unless otherwise indicated.
- C. Joints: Use solvent-cemented joints in ducts and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent ducts do not lie in same plane.
- D. Duct Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches (250 mm) o.c. for 5-inch (125-mm) ducts, and vary proportionately for other duct sizes.
- E. Building Wall Penetrations: Make a transition from underground duct to rigid steel conduit at least 10 feet (3 m) outside the building wall without reducing duct line slope away from the building, and without forming a trap in the line. Use fittings manufactured for duct-to-conduit transition. Install conduit penetrations of building walls as specified in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."
- F. Sealing: Provide temporary closure at terminations of ducts that have cables pulled. Seal spare ducts at terminations. Use sealing compound and plugs to withstand at least 15-psig (1.03-MPa) hydrostatic pressure.
- G. Pulling Cord: Install 100-lbf- (445-N-) test nylon cord in ducts, including spares.
- H. Concrete-Encased Ducts: Support ducts on duct separators.
 - 1. Separator Installation: Space separators close enough to prevent sagging and deforming of ducts, with not less than 4 spacers per 20 feet (6 m) of duct. Secure separators to earth and to ducts to prevent floating during concreting. Stagger separators approximately 6 inches (150 mm) between tiers. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
 - 2. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
 - a. Start at one end and finish at the other, allowing for expansion and contraction of ducts as their temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written recommendations, or use other specific measures to prevent expansion-contraction damage.
 - b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch (19-mm) reinforcing rod dowels extending 18 inches (450 mm) into concrete on both sides of joint near corners of envelope.
 - 3. Pouring Concrete: Spade concrete carefully during pours to prevent voids under and between conduits and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Use a plank to direct concrete down sides of bank assembly to trench bottom. Allow concrete to flow to center of bank and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-bank application.

- 4. Reinforcement: Reinforce concrete-encased duct banks where they cross disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.
- 5. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.
- 6. Minimum Space between Ducts: 3 inches between ducts and exterior envelope wall, 2 inches between ducts for like services, and 48 inches between power and signal ducts.
- 7. Depth: Install top of duct bank at least 24 inches (600 mm) below finished grade in areas not subject to deliberate traffic, and at least 30 inches (750 mm) below finished grade in deliberate traffic paths for vehicles, unless otherwise indicated.
- 8. Stub-Ups: Use manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Extend concrete encasement throughout the length of the elbow.
- 9. Stub-Ups: Use manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
 - b. Stub-Ups to Equipment: For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of base. Install insulated grounding bushings on terminations at equipment.
- Warning Tape: Bury warning tape approximately 12 inches (300 mm) above all concrete-encased ducts and duct banks. Align tape parallel to and within 3 inches (75 mm) of the centerline of duct bank. Provide an additional warning tape for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional tapes 12 inches (300 mm) apart, horizontally.
- I. Direct-Buried Duct Banks:
 - 1. Support ducts on duct separators coordinated with duct size, duct spacing, and outdoor temperature.
 - 2. Space separators close enough to prevent sagging and deforming of ducts, with not less than 5 spacers per 20 feet (6 m) of duct. Secure separators to earth and to ducts to prevent displacement during backfill and yet permit linear duct movement due to expansion and contraction as temperature changes. Stagger spacers approximately 6 inches (150 mm) between tiers.
 - 3. Excavate trench bottom to provide firm and uniform support for duct bank. Prepare trench bottoms as specified in Section 312000 "Earth Moving" for pipes less than 6 inches (150 mm) in nominal diameter.
 - 4. Install backfill as specified in Section 312000 "Earth Moving."
 - 5. After installing first tier of ducts, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand-place backfill to 4 inches (100 mm) over ducts and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."
 - 6. Install ducts with a minimum of 3 inches (75 mm) between ducts for like services and 6 inches (150 mm) between power and signal ducts.

- 7. Depth: Install top of duct bank at least 36 inches (900 mm) below finished grade, unless otherwise indicated.
- 8. Set elevation of bottom of duct bank below the frost line.
- 9. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Encase elbows for stub-up ducts throughout the length of the elbow.
- 10. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
 - b. For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.

3.4 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

- A. Precast Concrete Handhole and Manhole Installation:
 - 1. Comply with ASTM C 891, unless otherwise indicated.
 - 2. Install units level and plumb and with orientation and depth coordinated with connecting ducts to minimize bends and deflections required for proper entrances.
 - 3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch (25-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
- B. Elevations:
 - 1. Manhole Roof: Install with rooftop at least 15 inches (380 mm) below finished grade.
 - 2. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1 inch (25 mm) above finished grade.
 - 3. Install handholes with bottom below the frost line, below grade.
 - 4. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.
 - 5. Where indicated, cast handhole cover frame integrally with handhole structure.
- C. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.
- D. Manhole Access: Circular opening in manhole roof; sized to match cover size.
 - 1. Manholes with Fixed Ladders: Offset access opening from manhole centerlines to align with ladder.
 - 2. Install chimney, constructed of precast concrete collars and rings to support frame and cover and to connect cover with manhole roof opening. Provide moisture-tight masonry joints and waterproof grouting for cast-iron frame to chimney.
- E. Waterproofing: Apply waterproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. After ducts have been connected and grouted, and before

backfilling, waterproof joints and connections and touch up abrasions and scars. Waterproof exterior of manhole chimneys after mortar has cured at least three days.

- F. Dampproofing: Apply dampproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. Dampproofing materials and installation are specified in Section 071113 "Bituminous Dampproofing." After ducts have been connected and grouted, and before backfilling, dampproof joints and connections and touch up abrasions and scars. Dampproof exterior of manhole chimneys after mortar has cured at least three days.
- G. Hardware: Install removable hardware, including pulling eyes, cable stanchions, [and] cable arms, and insulators, as required for installation and support of cables and conductors and as indicated.

3.5 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.6 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections and prepare test reports:
 - 1. Demonstrate capability and compliance with requirements on completion of installation of underground ducts and utility structures.
 - 2. Pull aluminum or wood test mandrel through duct to prove joint integrity and test for outof-round duct. Provide mandrel equal to 80 percent fill of duct. If obstructions are indicated, remove obstructions and retest.
 - 3. Test manhole and handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Correct deficiencies and retest as specified above to demonstrate compliance.

3.7 CLEANING

- A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of ducts. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.
- B. Clean internal surfaces of manholes, including sump. Remove foreign material.

END OF SECTION 260543

SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 - 2. Sleeve-seal systems.
 - 3. Sleeve-seal fittings.
 - 4. Grout.
 - 5. Silicone sealants.
- B. Related Requirements:
 - 1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fireresistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Wall Sleeves:
 - 1. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
- B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
- C. Sleeves for Rectangular Openings:

- 1. Material: Galvanized sheet steel.
- 2. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and with no side larger than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 - b. For sleeve cross-section rectangle perimeter 50 inches (1270 mm) or more and one or more sides larger than 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.2 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - a. <u>Advance Products & Systems, Inc</u>.
 - b. <u>Metraflex Company (The)</u>.
 - c. <u>Pipeline Seal and Insulator, Inc</u>.
 - 2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Stainless steel.
 - 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-firerated walls or floors.
- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

- A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 - 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
- B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Comply with NEMA VE 2 for cable tray and cable penetrations.
- C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.
 - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. Install sleeves during erection of floors.
- D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

- F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544

SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Identification for raceways.
 - 2. Identification of power and control cables.
 - 3. Identification for conductors.
 - 4. Underground-line warning tape.
 - 5. Warning labels and signs.
 - 6. Instruction signs.
 - 7. Equipment identification labels.
 - 8. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

- A. Product Data: For each electrical identification product indicated.
- B. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.

1.4 QUALITY ASSURANCE

- A. Comply with ANSI A13.1 and IEEE C2.
- B. Comply with NFPA 70.

1.5 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with location of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 POWER RACEWAY IDENTIFICATION MATERIALS

- A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.
- B. Colors for Raceways Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field .
 - 2. Legend: Indicate voltage and system or service type.
- C. Colors for Raceways Carrying Circuits at More Than 600 V:
 - 1. Black letters on an orange field.
 - 2. Legend: "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch- (75-mm-) high letters on 20-inch (500-mm) centers.
- D. Snap-Around Labels for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
- E. Tape and Stencil for Raceways Carrying Circuits More Than 600 V: 4-inch- (100-mm-) wide black stripes on 10-inch (250-mm) centers diagonally over orange background that extends full length of raceway or duct and is 12 inches (300 mm) wide. Stop stripes at legends.
- F. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch (50 by 50 by 1.3 mm), with stamped legend, punched for use with self-locking cable tie fastener.

2.2 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

- A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.
- B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.
- C. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch (50 by 50 by 1.3 mm), with stamped legend, punched for use with self-locking cable tie fastener.
- D. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

2.3 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.

- B. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
- C. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
- D. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.4 FLOOR MARKING TAPE

A. 2-inch- (50-mm-) wide, 5-mil (0.125-mm) pressure-sensitive vinyl tape, with black and white stripes and clear vinyl overlay.

2.5 UNDERGROUND-LINE WARNING TAPE

- A. Tape:
 - 1. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 - 2. Printing on tape shall be permanent and shall not be damaged by burial operations.
 - 3. Tape material and ink shall be chemically inert, and not subject to degrading when exposed to acids, alkalis, and other destructive substances commonly found in soils.
- B. Color and Printing:
 - 1. Comply with ANSI Z535.1 through ANSI Z535.5.
 - 2. Inscriptions for Red-Colored Tapes: ELECTRIC LINE, HIGH VOLTAGE, .
 - 3. Inscriptions for Geen-Colored Tapes: COMMUNICATIONS CABLE.

2.6 WARNING LABELS AND SIGNS

- A. Comply with NFPA 70.
- B. Baked-Enamel Warning Signs:
 - 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 - 2. 1/4-inch (6.4-mm) grommets in corners for mounting.
 - 3. Nominal size, 7 by 10 inches (180 by 250 mm).
- C. Metal-Backed, Butyrate Warning Signs:
 - 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for application.
 - 2. 1/4-inch (6.4-mm) grommets in corners for mounting.

IDENTIFICATION FOR ELECTRICAL SYSTEMS

- 3. Nominal size, 10 by 14 inches (250 by 360 mm).
- D. Warning label and sign shall include, but are not limited to, the following legends:
 - 1. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES ."

2.7 INSTRUCTION SIGNS

- A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. inches (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes.
 - 1. Engraved legend with black letters on white face .
 - 2. Punched or drilled for mechanical fasteners.
 - 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 EQUIPMENT IDENTIFICATION LABELS

- A. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm).
- B. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. White letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm).

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Verify identity of each item before installing identification products.
- B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
- C. Apply identification devices to surfaces that require finish after completing finish work.
- D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

- E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- F. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
- G. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.
- H. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 - 1. Outdoors: UV-stabilized nylon.
 - 2. In Spaces Handling Environmental Air: Plenum rated.
- I. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches (150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches (400 mm) overall.
- J. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.

3.2 IDENTIFICATION SCHEDULE

- A. Concealed Raceways, Duct Banks, More Than 600 V: Tape and stencil 4-inch- (100-mm-) wide black stripes on 10-inch (250-mm) centers over orange background that extends full length of raceway or duct and is 12 inches (300 mm) wide. Stencil legend "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch- (75-mm-) high black letters on 20-inch (500-mm) centers. Stop stripes at legends.
- B. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with black indelible markers with the wiring system legend and system voltage. System legends shall be as follows:
 - 1. Emergency Power. Orange
 - 2. Power. Black
 - 3. Telecommunications (TEL/DATA) Green
 - 4. Fire Alarm (FA) Red
 - 5. Energy Management System (EMG) Blue
 - 6. Intercom (IC) White
- C. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.
 - 1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder and branch-circuit conductors.

- a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.
- b. Colors for 208/120-V Circuits:
 - 1) Phase A: Black.
 - 2) Phase B: Red.
 - 3) Phase C: Blue.
- c. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- D. Power-Circuit Conductor Identification, More than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use nonmetallic plastic tag holder with adhesive-backed phase tags, and a separate tag with the circuit designation.
- E. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.
- F. Conductors to Be Extended in the Future: Attach write-on tags and marker tape to conductors and list source.
- G. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 - 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual.
- H. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable.
 - 1. Install underground-line warning tape for both direct-buried cables and cables in raceway.
- I. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- J. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Bakedenamel warning signs or Metal-backed, butyrate warning signs.
 - 1. Comply with 29 CFR 1910.145.
 - 2. Identify system voltage with black letters on an orange background.
 - 3. Apply to exterior of door, cover, or other access.

- K. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
- L. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Indoor Equipment: Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - d. Fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
 - 2. Equipment to Be Labeled:
 - a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be engraved, laminated acrylic or melamine label.
 - b. Enclosures and electrical cabinets.
 - c. Access doors and panels for concealed electrical items.
 - d. Substations.
 - e. Emergency system boxes and enclosures.
 - f. Motor-control centers.
 - g. Enclosed switches.
 - h. Enclosed circuit breakers.
 - i. Enclosed controllers.
 - j. Variable-speed controllers.
 - k. Push-button stations.
 - l. Contactors.
 - m. Remote-controlled switches, dimmer modules, and control devices.
 - n. Monitoring and control equipment.

END OF SECTION 260553

This Page Left Intentionally Blank
SECTION 260800 - COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes commissioning process requirements for electrical systems, assemblies, and equipment.
- B. The Electrical (Division 26) Contractor's responsibilities are defined in this section and Section 019113 of the specifications. These responsibilities apply to all specialty Sub-Contractors and major equipment Suppliers within Division 26. Each Contractor and Supplier shall review Section 019113, and their bids shall include for carrying out the Work described, as it applies to each Section within Division 26 specifications, individually and collectively.
- C. Related Sections:
 - 1. Division 01 Section "General Commissioning Requirements" for general commissioning process requirements.

1.3 DEFINITIONS

- A. Commissioning Plan: A document that outlines the organization, schedule, allocation of resources, and documentation requirements of the commissioning process.
- B. CxA: Commissioning Authority.
- C. FPT: Functional Performance Test. Test of dynamic function and operation of equipment and systems. Systems are tested under various modes, such as during low cooling or heating loads, high loads, component failures, unoccupied, varying outside air temperatures, life safety conditions, power failure, etc. Systems are run through all specified sequences of operation.
- D. SVC: System Verification Checklist. A list of static inspections and elementary component tests that verify proper installation of equipment (e.g., belt tension, oil levels, labels affixed, gauges in place, sensors calibrated, etc.).
- E. Systems, Subsystems, Equipment, and Components: Where these terms are used together or separately, they shall mean "as-built" systems, subsystems, equipment, and components.

1.4 INFORMATIONAL SUBMITTALS

- A. Certificate of proper controls hardware specification to permit functional performance testing.
- B. Certificates of readiness.
- C. Certificates of completion of System Verification Checklists (SVC).
- D. Certificates of completion of controls point-to-point checkout.

1.5 ELECTRICAL CONTRACTOR'S RESPONSIBILITIES

- A. Ensure that all specialty Sub-Contractors within Division 26 execute their commissioning responsibilities according to the Contract Documents and schedule.
- B. Perform commissioning functional performance tests (FPT) at the direction of the CxA.
- C. Attend construction phase controls coordination meeting.
- D. Participate in electrical systems, assemblies, equipment, and component maintenance orientation and training as directed by the CxA.

1.6 COMMISSIONING DOCUMENTATION

- A. Provide the following information to the CxA for inclusion in the commissioning plan:
 - 1. Identification of installed systems, assemblies, equipment, and components including design changes that occurred during the construction phase.
 - 2. Certificate of completion certifying that System Verification Checklists have been completed.
 - 3. Certificate of readiness certifying that electrical systems, subsystems, equipment, and associated controls are ready for testing.
 - 4. Test and inspection reports and certificates.
 - 5. Corrective action documents.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TESTING PREPARATION / SYSTEM VERIFICATION CHECKLISTS

- A. Certify that electrical systems, subsystems, and equipment have been installed, calibrated, and started and are operating according to the Contract Documents.
- B. Certify that electrical instrumentation and control systems have been completed and calibrated, that they are operating according to the Contract Documents, and that pretest set points have been recorded.

- C. Set systems, subsystems, and equipment into operating mode to be tested (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle, emergency power, and alarm conditions).
- D. Inspect and verify the position of each device and interlock identified on checklists.
- E. Check safety cutouts, alarms, and interlocks.

3.2 GENERAL TESTING REQUIREMENTS

- A. Provide technicians, instrumentation, and tools to perform commissioning test at the direction of the CxA.
- B. Scope of electrical testing shall include entire lighting controls installation, from lighting interfacing with the BAS to the exterior lighting and occupancy sensors serving each space. Testing shall include measuring capacities and effectiveness of operational and control functions.
- C. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of building automation system controllers and sensors.
- D. The CxA along with the Electrical Contractor shall prepare detailed testing plans, procedures, and checklists for electrical systems, subsystems, and equipment.
- E. If tests cannot be completed because of a deficiency outside the scope of the electrical system, document the deficiency and report it to the Owner. After deficiencies are resolved, reschedule tests.

3.3 ELECTRICAL SYSTEMS, SUBSYSTEMS, AND EQUIPMENT TESTING PROCEDURES

- A. Electrical Control System Testing: Field testing plans and testing requirements are specified in Division 23 and Division 26 controls Sections. Assist the CxA with preparation of testing plans.
- B. Electrical System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of electrical systems and equipment at the direction of the CxA. The CxA shall determine the sequence of testing and testing procedures for each equipment item and pipe section to be tested.

END OF SECTION 260800

This Page Left Intentionally Blank

SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Time switches.
 - 2. Photoelectric switches.
 - 3. Indoor occupancy sensors.
 - 4. Lighting contactors.
 - 5. Emergency shunt relays.
- B. Related Requirements:
 - 1. Section 262726 "Wiring Devices" for manual light switches.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show installation details for occupancy and light-level sensors.
 - 1. Interconnection diagrams showing field-installed wiring.
 - 2. Include diagrams for power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 DIGITAL AUTO-OFF TIME SWITCHES

A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Wattstopper; TS-400 or comparable product by one of the following:

- 1. <u>Cooper Industries, Inc</u>. (TSW-MV)
- 2. <u>Intermatic, Inc</u>. (EI400)
- 3. <u>Leviton Mfg. Company Inc</u>.
- B. <u>Description</u>: The digital time switch shall be programmable to turn lights off after a preset time. Time switch shall be a completely self-contained control system that replaces the standard toggle switch. It shall have a ground wire and ground strap for safety. Switching mechanism shall be a latching air gap relay. Zero Crossing Circuitry shall be used to increase the relay life, protect from the effects of inrush current, and increase the switch's longevity. Time switch shall be compatible with all electronic ballasts, motor loads, compact fluorescent and inductive loads. Triac and other harmonic generating devices shall not be allowed. Time-out period shall be adjustable in increments of 5 minutes from 5 minutes to 1 hour, and in increments of 15 minutes from 1 hour to 12 hours. Time switch shall be capable of operating as an ON/OFF switch.
- C. <u>Load Capacity</u>: Time switch shall have no minimum load requirement and shall be capable of controlling 0 to 800 watt incandescent, fluorescent @ 120 Vac; 1/6 hp @ 125 Vac.
- D. <u>Manual Override</u>: Time scroll feature shall allow manual overriding of the preset time-out period. Selecting time scroll UP shall allow time-out period to scroll up throughout the timer possibilities to the maximum. Time scroll DN (down) shall allow time-out period to scroll down to minimum.
- E. <u>Warning</u>: Time switch shall have the option for a one second light flash warning at five minutes before the timer runs out and twice when the countdown reaches one minute (when used to control lighting loads). Time switch shall have the option for a beep warning that shall sound every five seconds once the time switch countdown reaches one minute.
- F. <u>Safety</u>: For safety, the time switch shall have a 100% OFF override switch with no leakage current to the load. For safety, in the event there is an open circuit in the AC line such as a ballast or lamp failure, the time switch shall automatically switch to OFF mode.

2.2 SWITCH BOX TIME SWITCHES

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Intermatic, Inc.; EI600 or comparable product by one of the following:
 - 1. <u>Cooper Industries, Inc</u>.
 - 2. <u>Leviton Mfg. Company Inc</u>.
- B. Electronic Time Switches: Solid state, programmable, with alphanumeric display.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Contact Configuration: SPST.
 - 3. Contact Rating: 1800W inductive or resistive @ 277 Vac.
 - 4. Programs: 40 on-off operations per week and an annual holiday schedule that overrides the weekly operation on holidays.
 - 5. Astronomic Time: All channels.

2.3 SINGLE CIRCUIT TIME SWITCHES

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Intermatic, Inc.; E171C (SPST); E174C (DPST) or comparable product by one of the following:
 - 1. <u>Cooper Industries, Inc</u>.
 - 2. <u>Leviton Mfg. Company Inc</u>.
- B. Electronic Time Switches: Solid state, programmable, with alphanumeric display; complying with UL 917.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Contact Configuration: SPST or DPST as required for circuit.
 - 3. Contact Rating: 30-A inductive or resistive, 24 / 120 / 240 / 277-V ac.
 - 4. Programs: Eight on-off set points on a weekly schedule.
 - 5. Battery Backup: Not less than seven days reserve, to maintain schedules and time clock.

2.4 MULTI CIRCUIT TIME SWITCHES

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide Internatic, Inc.; ET70815CR or comparable product by one of the following:
 - 1. Cooper Industries, Inc.
 - 2. <u>Leviton Mfg. Company Inc</u>.
- B. Electronic Time Switches: Solid state, programmable, with alphanumeric display; complying with UL 917.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Contact Configuration: SPDT.
 - 3. Contact Rating: 20-A inductive or resistive, 24 / 120 / 240 / 277-V ac.
 - 4. Programs: Eight channels; each channel is individually programmable with 40 on-off operations per week, plus four seasonal schedules that modify the basic program, and an annual holiday schedule that overrides the weekly operation on holidays.
 - 5. Astronomic Time: All channels.
 - 6. Battery Backup: Not less than seven days reserve, to maintain schedules and time clock.

2.5 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - 1. <u>Cooper Industries, Inc</u>.
 - 2. <u>Intermatic, Inc</u>.
 - 3. <u>Tyco Electronics; ALR Brand</u>.

- B. Description: Solid state, with SPST dry contacts rated for 1800-VA tungsten or 1000-VA inductive , to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Light-Level Monitoring Range: 1.5 to 10 fc (16.14 to 108 lux), with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of the photocell to prevent fixed light sources from causing turn-off.
 - 3. Time Delay: Fifteen second minimum, to prevent false operation.
 - 4. Surge Protection: Metal-oxide varistor.
 - 5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.

2.6 INDOOR OCCUPANCY SENSORS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. <u>Cooper Industries, Inc</u>.
 - 2. <u>Hubbell Building Automation, Inc</u>.
 - 3. <u>Leviton Mfg. Company Inc</u>.
 - 4. <u>Lithonia Lighting; Acuity Lighting Group, Inc</u>.
 - 5. <u>Lutron Electronics Co., Inc</u>.
 - 6. <u>Square D; a brand of Schneider Electric</u>.
- B. General Requirements for Sensors: Wall- or ceiling-mounted, solid-state indoor occupancy sensors with a separate power pack.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 3. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor is powered from the power pack.
 - 4. Power Pack: Dry contacts rated for 20-A ballast load at 120-V ac and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 - 5. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Relay: Externally mounted through a 1/2-inch (13-mm) knockout in a standard electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 6. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
 - 7. Bypass Switch: Override the "off" function in case of sensor failure.

- C. PIR Type: Ceiling mounted; detect occupants in coverage area by their heat and movement.
 - 1. Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm).
 - 2. Detection Coverage (Room): Detect occupancy anywhere in a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.
 - 3. Detection Coverage (Corridor): Detect occupancy within 90 feet (27.4 m) when mounted on a 10-foot- (3-m-) high ceiling.
- D. Ultrasonic Type: Ceiling mounted; detect occupants in coverage area through pattern changes of reflected ultrasonic energy .
 - 1. Detector Sensitivity: Detect a person of average size and weight moving not less than 12 inches (305 mm) in either a horizontal or a vertical manner at an approximate speed of 12 inches/s (305 mm/s).
 - 2. Detection Coverage (Large Room): Detect occupancy anywhere within a circular area of 2000 sq. ft. (186 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.
 - 3. Detection Coverage (Corridor): Detect occupancy anywhere within 90 feet (27.4 m) when mounted on a 10-foot- (3-m-) high ceiling in a corridor not wider than 14 feet (4.3 m).
- E. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm), and detect a person of average size and weight moving not less than 12 inches (305 mm) in either a horizontal or a vertical manner at an approximate speed of 12 inches/s (305 mm/s).
 - 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.

2.7 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - 1. <u>Bryant Electric; a Hubbell company</u>.
 - 2. <u>Cooper Industries, Inc</u>.
 - 3. <u>Hubbell Building Automation, Inc</u>.
 - 4. <u>Leviton Mfg. Company Inc</u>.
 - 5. <u>Lithonia Lighting; Acuity Lighting Group, Inc</u>.
 - 6. <u>Sensor Switch, Inc</u>.
 - 7. <u>Square D; a brand of Schneider Electric</u>.
 - 8. <u>Watt Stopper</u>.
- B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor, suitable for mounting in a single gang switchbox.

- 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F (0 to 49 deg C).
- 3. Switch Rating: Not less than 800-VA fluorescent at 120 V.
- C. Wall-Switch Sensor:
 - 1. Standard Range: 210-degree field of view, with a minimum coverage area of 900 sq. ft. (84 sq. m).
 - 2. Sensing Technology: PIR/Ultrasonic.
 - 3. Switch Type: Two pole, single circuit.
 - 4. Voltage: 120 V; dual-technology type.
 - 5. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
 - 6. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.

2.8 LIGHTING CONTACTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - 1. <u>Allen-Bradley/Rockwell Automation</u>.
 - 2. ASCO Power Technologies, LP; a division of Emerson Electric Co.
 - 3. <u>General Electric Company; GE Consumer & Industrial Electrical Distribution; Total Lighting Control.</u>
 - 4. <u>Square D; a brand of Schneider Electric</u>.
- B. Description: Electrically operated and mechanically held, combination-type lighting contactors with nonfused disconnect, complying with NEMA ICS 2 and UL 508.
 - 1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current).
 - 2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
 - 3. Enclosure: Comply with NEMA 250.
 - 4. Provide with control and pilot devices, matching the NEMA type specified for the enclosure.
- C. BAS Interface: Provide hardware interface to enable the BAS to monitor and control lighting contactors.
 - 1. Monitoring: On-off status.
 - 2. Control: On-off operation.

2.9 EMERGENCY SHUNT RELAY

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following :

- 1. Lighting Control and Design; Acuity Lighting Group, Inc.
- 2. <u>Watt Stopper</u>.
- 3. <u>General Electric Company; GE Consumer & Industrial Electrical Distribution; Total Lighting Control.</u>
- 4. Square D; a brand of Schneider Electric.
- B. Description: Normally closed, electrically held relay, arranged for wiring in parallel with manual switching contacts; complying with UL 924.
 - 1. Coil Rating: 120V.

2.10 CONDUCTORS AND CABLES

- A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller thanNo. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 SENSOR INSTALLATION

- A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.
- B. Install and aim sensors in locations to achieve complete coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.2 WIRING INSTALLATION

- A. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 3/4 inch.
- B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
- C. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.

D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.3 IDENTIFICATION

- A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."
 - 1. Identify controlled circuits in lighting contactors.
 - 2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.
- B. Label time switches and contactors with a unique designation.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Lighting control devices will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.5 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting sensors to suit actual occupied conditions. Provide one visit to Project during other-than-normal occupancy hours for this purpose.
 - 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.

3.6 DEMONSTRATION

- A. Coordinate demonstration of products specified in this Section with demonstration requirements for low-voltage, programmable lighting control systems specified in Section 260943 "Network Lighting Controls."
- B. Train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923

This Page Left Intentionally Blank

SECTION 260953 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Manual fire-alarm boxes.
- 2. System smoke detectors.
- 3. Heat detectors.
- 4. Notification appliances.
- 5. Magnetic door holders.
- 6. Addressable interface device.
- 7. Notification Appliance Circuit Power Extender

1.3 DEFINITIONS

A. LED: Light-emitting diode.

1.4 SYSTEM DESCRIPTION

A. Noncoded, UL-certified, addressable system, with multiplexed signal transmission, dedicated to fire-alarm service only.

1.5 PERFORMANCE REQUIREMENTS

- A. Fire alarm system design shall be approved by authorities having jurisdiction.
- B. Fire alarm system, as designed and installed, shall comply with NFPA 72.

1.6 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. General Submittal Requirements:
 - 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 260170 "Operation and Maintenance Data," include the following:
 - 1. Comply with the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
 - 2. Provide "Record of Completion Documents" according to NFPA 72 article "Permanent Records" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter.
 - 3. Record copy of site-specific software.
 - 4. Provide "Maintenance, Inspection and Testing Records" according to NFPA 72 article of the same name and include the following:
 - a. Frequency of testing of installed components.
 - b. Frequency of inspection of installed components.
 - c. Requirements and recommendations related to results of maintenance.
 - d. Manufacturer's user training manuals.
 - 5. Manufacturer's required maintenance related to system warranty requirements.
 - 6. Abbreviated operating instructions for mounting at fire-alarm control unit.
- B. Software and Firmware Operational Documentation:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 - 3. Device address list.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.
- B. Source Limitations for Fire-Alarm System and Components: Obtain fire-alarm system from single source from single manufacturer. Components shall be compatible with, and operate as, an extension of existing system.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.

1.9 PROJECT CONDITIONS

A. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:

- 1. Notify Architect and Owner no fewer than fourteen days in advance of proposed interruption of fire-alarm service.
- 2. Do not proceed with interruption of fire-alarm service without Architect's and Owner's written permission.

1.10 SEQUENCING AND SCHEDULING

A. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted.

1.11 SOFTWARE SERVICE AGREEMENT

- A. Comply with UL 864.
- B. Technical Support: Beginning with Substantial Completion, provide software support for two years.
- C. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.
 - 1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide products that are compatible with the existing fire alarm controller:
 - 1. <u>SimplexGrinnell</u> Model 4100U.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

- A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:
 - 1. Manual stations.
 - 2. Heat detectors.
 - 3. Smoke detectors.
 - 4. Duct smoke detectors.
- B. Fire-alarm signal shall initiate the following actions:
 - 1. Continuously operate alarm notification appliances.
 - 2. Identify alarm at fire-alarm control unit and all remote annunciators.

DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

- 3. Transmit an alarm signal to the remote alarm receiving station.
- 4. Activate voice/alarm communication system.
- 5. Close smoke dampers in air ducts of designated air-conditioning duct systems.
- 6. Record events in the system memory.
- C. System trouble signal initiation shall be by one or more of the following devices and actions:
 - 1. Open circuits, shorts, and grounds in designated circuits.
 - 2. Loss of primary power at fire-alarm control unit.
 - 3. Ground or a single break in fire-alarm control unit internal circuits.
 - 4. Abnormal ac voltage at fire-alarm control unit.
 - 5. Break in standby battery circuitry.
 - 6. Failure of battery charging.
 - 7. Abnormal position of any switch at fire-alarm control unit or annunciator.
- D. System Trouble and Supervisory Signal Actions: Initiate notification appliance and annunciate at fire-alarm control unit and any remote annunciators. Record the event.

2.3 NAC POWER EXTENDER (SIMPLEX 4009-9201)

A. The Power Extender provides additional DC signaling capacity to the existing Fire Alarm Control Panel.

2.4 MANUAL FIRE-ALARM BOXES

- A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.
 - 1. Double-action mechanism requiring two actions to initiate an alarm, breaking-glass or plastic-rod pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
 - 2. Station Reset: Key- or wrench-operated switch.
 - 3. Indoor Protective Shield: Factory-fabricated clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm. Lifting the cover actuates an integral battery-powered audible horn intended to discourage false-alarm operation.
 - 4. Weatherproof Protective Shield: Factory-fabricated clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm.

2.5 SYSTEM SMOKE DETECTORS

- A. General Requirements for System Smoke Detectors:
 - 1. Comply with UL 268; operating at 24-V dc, nominal.
 - 2. Detectors shall be two-wire type.
 - 3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

- 4. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
- 5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
- 6. Integral Visual-Indicating Light: LED type indicating detector has operated.
- 7. Remote Control: Unless otherwise indicated, detectors shall be analog-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
- B. Photoelectric Smoke Detectors:
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).
- C. Ionization Smoke Detector:
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).
- D. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).
 - 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector.

- 4. Each sensor shall have multiple levels of detection sensitivity.
- 5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
- 6. Relay Fan Shutdown: Rated to interrupt fan motor-control circuit.

2.6 HEAT DETECTORS

- A. General Requirements for Heat Detectors: Comply with UL 521.
- B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F (57 deg C) or a rate of rise that exceeds 15 deg F (8 deg C) per minute unless otherwise required by NFPA 72.
 - 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 - 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
- C. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature of 190 deg F (88 deg C).
 - 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 - 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.7 NOTIFICATION APPLIANCES

- A. General Requirements for Notification Appliances: Connected to notification appliance signal circuits, zoned as indicated, equipped for mounting as indicated and with screw terminals for system connections.
 - 1. Combination Devices: Factory-integrated audible and visible devices in a singlemounting assembly, equipped for mounting as indicated and with screw terminals for system connections.
- B. Chimes, Low-Level Output: Vibrating type, 75-dBA minimum rated output.
- C. Chimes, High-Level Output: Vibrating type, 81-dBA minimum rated output.
- D. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet (3 m) from the horn, using the coded signal prescribed in UL 464 test protocol.
- E. Visible Notification Appliances: Xenon strobe lights comply with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch- (25-mm-) high letters on the lens.
 - 1. Rated Light Output:
 - a. $\frac{75}{110}$ cd, selectable in the field.

- 2. Mounting: Wall mounted unless otherwise indicated.
- 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
- 4. Flashing shall be in a temporal pattern, synchronized with other units.
- 5. Strobe Leads: Factory connected to screw terminals.
- 6. Mounting Faceplate: Factory finished red.
- F. Voice/Tone Notification Appliances:
 - 1. Appliances shall comply with UL 1480 and shall be listed and labeled by an NRTL.
 - 2. High-Range Units: Rated 2 to 15 W.
 - 3. Low-Range Units: Rated 1 to 2 W.
 - 4. Mounting: semirecessed.
 - 5. Matching Transformers: Tap range matched to acoustical environment of speaker location.

2.8 ADDRESSABLE INTERFACE DEVICE

- A. Description: Microelectronic monitor module, NRTL listed for use in providing a system address for alarm-initiating devices for wired applications with normally open contacts.
- B. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall or to circuit-breaker shunt trip for power shutdown.

2.9 DEVICE GUARDS

- A. Description: Welded wire mesh of size and shape for the manual station, smoke detector, gong, or other device requiring protection.
 - 1. Factory fabricated and furnished by manufacturer of device.
 - 2. Finish: Paint of color to match the protected device.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

- A. Comply with NFPA 72 for installation of fire-alarm equipment.
- B. Install wall-mounted equipment, with tops of cabinets not more than 72 inches (1830 mm) above the finished floor.
- C. Connecting to Existing Equipment: Verify that existing fire-alarm system is operational before making changes or connections.
 - 1. Connect new equipment to existing control panel in existing building.
 - 2. Expand, modify, and supplement existing control equipment as necessary to extend existing control and monitoring functions to the new points. New components shall be

capable of merging with existing configuration without degrading the performance of either system.

- D. Smoke- or Heat-Detector Spacing:
 - 1. Comply with NFPA 72, "Smoke-Sensing Fire Detectors" Section in the "Initiating Devices" Chapter, for smoke-detector spacing.
 - 2. Comply with NFPA 72, "Heat-Sensing Fire Detectors" Section in the "Initiating Devices" Chapter, for heat-detector spacing.
 - 3. Smooth ceiling spacing shall not exceed 30 feet (9 m).
 - 4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Appendix A or Appendix B in NFPA 72.
 - 5. HVAC: Locate detectors not closer than 5 feet (1.5 m) from air-supply diffuser or returnair opening.
 - 6. Lighting Fixtures: Locate detectors not closer than 12 inches (300 mm) from any part of a lighting fixture.
- E. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct.
- F. Remote Status and Alarm Indicators: Install near each smoke detector that is not readily visible from normal viewing position.
- G. Audible Alarm-Indicating Devices: Install not less than 6 inches (150 mm) below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille.
- H. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches (150 mm) below the ceiling.
- I. Device Location-Indicating Lights: Locate in public space near the device they monitor.

3.2 CONNECTIONS

- A. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 3 feet (1 m) from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
 - 1. Smoke dampers in air ducts of designated air-conditioning duct systems.

3.3 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- B. Install framed instructions in a location visible from fire-alarm control unit.

3.4 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

3.5 FIELD QUALITY CONTROL

- A. Field tests shall be witnessed by Engineer and authorities having jurisdiction .
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Tests and Inspections:
 - 1. Visual Inspection: Conduct visual inspection prior to testing.
 - a. Inspection shall be based on completed Record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" Table in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter.
 - b. Comply with "Visual Inspection Frequencies" Table in the "Inspection" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
 - 2. System Testing: Comply with "Test Methods" Table in the "Testing" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
 - 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
 - 4. Test audible appliances for the private operating mode according to manufacturer's written instructions.
 - 5. Test visible appliances for the public operating mode according to manufacturer's written instructions.
 - 6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
- E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.
- F. Fire-alarm system will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

- H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.
- I. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 260953

SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Distribution, lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS

- A. SVR: Suppressed voltage rating.
- B. TVSS: Transient voltage surge suppressor.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 - 3. Detail bus configuration, current, and voltage ratings.
 - 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 - 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 6. Include wiring diagrams for power, signal, and control wiring.
 - 7. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823
 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.
- B. Panelboard Schedules: Submit final versions of panel schedules for each panelboard after load balancing.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Keys: Two spares for each type of panelboard cabinet lock.
 - 2. Circuit Breakers Including GFCI and Ground Fault Equipment Protection (GFEP) Types: Two spares for each panelboard where devices are installed.
 - 3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.7 QUALITY ASSURANCE

- A. Source Limitations: Obtain panelboards, overcurrent protective devices, disconnecting devices, components, and accessories from single source from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NEMA PB 1.
- E. Comply with NFPA 70.

1.8 PROJECT CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

- B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Architect and Owner no fewer than seven days in advance of proposed interruption of electric service.
 - 2. Do not proceed with interruption of electric service without Architect's and Owner's written permission.
 - 3. Comply with NFPA 70E.

1.9 COORDINATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.10 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

- A. Enclosures: Flush- and surface-mounted cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 3R.
 - 2. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.
 - 3. Finishes:
 - a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Same finish as panels and trim.

- c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
- 4. Directory Card: Inside panelboard door, mounted in transparent card holder.
- B. Incoming Mains Location: Top and bottom as indicated on drawings.
- C. Phase, Neutral, and Ground Buses:
 - 1. Material: Hard-drawn IACS copper, 98 percent conductivity with rounded edges.
 - 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 - 3. Split Bus: Vertical buses divided into individual vertical sections.
- D. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Main and Neutral Lugs: Mechanical type.
 - 3. Ground Lugs and Bus-Configured Terminators: Mechanical type.
- E. Service Equipment Label: NRTL labeled for use as service equipment for panelboards or load centers with one or more main service disconnecting and overcurrent protective devices.
- F. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
- G. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals.

2.2 DISTRIBUTION, LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - 1. <u>General Electric Company; GE Consumer & Industrial Electrical Distribution</u>.
 - 2. <u>Siemens Energy & Automation, Inc.</u>
 - 3. <u>Square D; a brand of Schneider Electric</u>.
- B. Panelboards: NEMA PB 1, power and feeder distribution type.
- C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 - 1. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.
- D. Mains: Circuit breaker or Lugs only as indicated on drawings.
- E. Branch Overcurrent Protective Devices: Bolt-on circuit breakers.

2.3 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
 - 2. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - d. Ground-fault pickup level, time delay, and I^2 t response.
 - 3. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
 - 4. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 - d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - e. Shunt Trip: 120 -V trip coil energized from separate circuit. Provide shunt trip breakers for all circuits serving elevators.
 - f. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts and "b" contacts operate in reverse of circuit-breaker contacts.
 - g. Multipole units enclosed in a single housing or factory assembled to operate as a single unit.
 - h. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position for all main breakers and all breakers located in main panel.

2.4 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.
- B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.

- C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install panelboards and accessories according to NEMA PB 1.1.
- B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
- C. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
- D. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- E. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
- F. Install filler plates in unused spaces.
- G. Stub four 1-inch (27-GRC) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future.
- H. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.
- I. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Section 260553 "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Tests and Inspections:

- 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 - c. Instruments and Equipment:
 - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- C. Panelboards will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

- A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as directed by the Engineer.
- C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.
 - 1. Measure as directed during period of normal system loading.
 - 2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 - 3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
 - 4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

END OF SECTION 262416

This Page Left Intentionally Blank

SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 - 2. Twist-locking receptacles.
 - 3. Weather-resistant receptacles.
 - 4. Pendant cord-connector devices.
 - 5. Cord and plug sets.
 - 6. Floor service outlets.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- D. RFI: Radio-frequency interference.
- E. TVSS: Transient voltage surge suppressor.
- F. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

- A. Coordination:
 - 1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 - 2. Cord and Plug Sets: Match equipment requirements.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

WIRING DEVICES

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers'</u> Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles:
 - 1. <u>Cooper Wiring Devices; Division of Cooper Industries, Inc. (Cooper)</u>.
 - 2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).
 - 3. Leviton Mfg. Company Inc. (Leviton).
 - 4. Pass & Seymour/Legrand (Pass & Seymour).
- B. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

2.3 STRAIGHT-BLADE RECEPTACLES

- A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following :
 - a. <u>Cooper; 5351 (single), CR5362 (duplex)</u>.
 - b. Hubbell; HBL5351 (single), HBL5352 (duplex).
 - c. Leviton; 5891 (single), 5352 (duplex).
 - d. Pass & Seymour; 5361 (single), 5362 (duplex).

2.4 GFCI RECEPTACLES

- A. General Description:
 - 1. Straight blade, non-feed-through type.
 - 2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
 - 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.
- B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>Cooper; VGF20</u>.

- b. <u>Hubbell; GFR5352L</u>.
- c. <u>Pass & Seymour; 2095</u>.
- d. <u>Leviton; 7590</u>.

2.5 TWIST-LOCKING RECEPTACLES

- A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following :
 - a. <u>Cooper; CWL520R</u>.
 - b. <u>Hubbell; HBL2310</u>.
 - c. <u>Leviton; 2310</u>.
 - d. Pass & Seymour; L520-R.

2.6 CORD AND PLUG SETS

- A. Description:
 - 1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 - 2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.
 - 3. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.

2.7 TOGGLE SWITCHES

- A. Comply with NEMA WD 1, UL 20, and FS W-S-896.
- B. Switches, 120/277 V, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following :
 - 1) <u>Single Pole:</u>
 - 2) <u>Cooper; AH1221</u>.
 - 3) <u>Hubbell; HBL1221</u>.
 - 4) <u>Leviton; 1221-2</u>.
 - 5) Pass & Seymour; CSB20AC1.
 - 6) <u>Two Pole:</u>
 - 7) Cooper; AH1222.
 - 8) Hubbell; HBL1222.
 - 9) <u>Leviton; 1222-2</u>.
 - 10) Pass & Seymour; CSB20AC2.

- 11) <u>Three Way:</u>
- 12) <u>Cooper; AH1223</u>.
- 13) Hubbell; HBL1223.
- 14) <u>Leviton; 1223-2</u>.
- 15) Pass & Seymour; CSB20AC3.
- 16) Four Way:
- 17) <u>Cooper; AH1224</u>.
- 18) <u>Hubbell; HBL1224</u>.
- 19) <u>Leviton; 1224-2</u>.
- 20) Pass & Seymour; CSB20AC4.
- C. Pilot-Light Switches, 20 A:
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Cooper; AH1221PL for 120 and 277 V</u>.
 - b. Hubbell; HBL1201PL for 120 and 277 V.
 - c. <u>Leviton; 1221-LH1</u>.
 - d. Pass & Seymour; PS20AC1RPL for 120 V, PS20AC1RPL7 for 277 V.
 - 2. Description: Single pole, with neon-lighted handle, illuminated when switch is "off."
- D. Key-Operated Switches, 120/277 V, 20 A:
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following :
 - a. <u>Cooper; AH1221L</u>.
 - b. <u>Hubbell; HBL1221L</u>.
 - c. Leviton; 1221-2L.
 - d. Pass & Seymour; PS20AC1-L.
 - 2. Description: Single pole, with factory-supplied key in lieu of switch handle.

2.8 WALL PLATES

- A. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: 0.035-inch- (1-mm-) thick, satin-finished, Type 302 stainless steel .
 - 3. Material for Unfinished Spaces: 0.035-inch- (1-mm-) thick, satin-finished, Type 302 stainless steel.
 - 4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.
- B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weatherresistant thermoplastic with lockable cover.
2.9 FLOOR SERVICE FITTINGS

- A. Type: Modular, flush-type, dual-service units suitable for wiring method used.
- B. Compartments: Barrier separates power from voice and data communication cabling.
- C. Service Plate: Rectangular or Round, die-cast aluminum or solid brass with satin finish as indicated on drawings.
- D. Power Receptacle: NEMA WD 6 Configuration 5-20R, gray finish, unless otherwise indicated.
- E. Voice and Data Communication Outlet: Blank cover with bushed cable opening

2.10 FINISHES

- A. Device Color:
 - 1. Wiring Devices Connected to Normal Power System: As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.
- B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
- B. Coordination with Other Trades:
 - 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.
- C. Conductors:
 - 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70.

- D. Device Installation:
 - 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
 - 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 - 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 - 4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
 - 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
 - 6. Use a torque screwdriver when a torque is recommended or required by manufacturer. See section 260519 – Low-Voltage Electrical Power Conductors and Cables for additional requirements.
 - 7. Tighten unused terminal screws on the device.
 - 8. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
- E. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right .
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- H. Adjust locations of floor service outlets to suit arrangement of partitions and furnishings.

3.2 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Test Instruments: Use instruments that comply with UL 1436.
 - 2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- B. Tests for Convenience Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.
 - 2. Percent Voltage Drop under 15-A Load: A value of 3 percent or higher is unacceptable.

- 3. Ground Impedance: Values of up to 2 ohms are acceptable.
- 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
- 5. Using the test plug, verify that the device and its outlet box are securely mounted.
- 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- C. Wiring device will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

This Page Left Intentionally Blank

SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cartridge fuses rated 600-V ac and less for use in control circuits, enclosed switches and enclosed controllers.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material, dimensions, descriptions of individual components, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:
 - 1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 - a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 - b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.
 - 2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 - 3. Current-limitation curves for fuses with current-limiting characteristics.
 - 4. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Ambient temperature adjustment information.
 - 2. Current-limitation curves for fuses with current-limiting characteristics.

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMA FU 1 for cartridge fuses.
- D. Comply with NFPA 70.

1.6 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. <u>Cooper Bussmann, Inc</u>.
 - 2. <u>Edison Fuse, Inc</u>.
 - 3. <u>Ferraz Shawmut, Inc</u>.
 - 4. <u>Littelfuse, Inc</u>.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
- B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
- C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

- D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

- A. Cartridge Fuses:
 - 1. Motor Branch Circuits: Class RK5, time delay.
 - 2. Control Circuits: Class CC, fast acting.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.

This Page Left Intentionally Blank

SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 - 4. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 260170 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Fuse Pullers: Two for each size and type.

1.7 QUALITY ASSURANCE

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NFPA 70.

1.8 PROJECT CONDITIONS

- A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Architect and Owner no fewer than seven days in advance of proposed interruption of electric service.
 - 2. Indicate method of providing temporary electric service.
 - 3. Do not proceed with interruption of electric service without Architect's and Owner's written permission.
 - 4. Comply with NFPA 70E.

1.9 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - 1. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 2. <u>Siemens Energy & Automation, Inc.</u>

ENCLOSED SWITCHES AND CIRCUIT BREAKERS

- 3. <u>Square D; a brand of Schneider Electric</u>.
- B. Type HD, Heavy Duty, Single Throw, 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper neutral conductors. Provide where neutral conductor is indicated on drawings.
 - 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 - 4. Auxiliary Contact Kit: One NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 - 5. Hookstick Handle: Allows use of a hookstick to operate the handle.
 - 6. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.2 NONFUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - 1. <u>General Electric Company; GE Consumer & Industrial Electrical Distribution</u>.
 - 2. <u>Siemens Energy & Automation, Inc.</u>
 - 3. <u>Square D; a brand of Schneider Electric</u>.
- B. Type HD, Heavy Duty, Single Throw, 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copperground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper neutral conductors.
 - 3. Hookstick Handle: Allows use of a hookstick to operate the handle.
 - 4. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.3 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 2.
 - 2. Outdoor Locations: NEMA 250, Type 3R.
 - 3. Air Handling Plenum Spaces: NEMA 250, Type 12

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- B. Install fuses in fusible devices.
- C. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

- A. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- B. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

This Page Left Intentionally Blank

SECTION 262913 - ENCLOSED CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes the following enclosed controllers rated 600 V and less:1. Full-voltage magnetic.

1.3 DEFINITIONS

- A. CPT: Control power transformer.
- B. N.C.: Normally closed.
- C. N.O.: Normally open.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed controller. Include manufacturer's technical data on features, performance, electrical characteristics, ratings, and enclosure types and finishes.
- B. Shop Drawings: For each enclosed controller. Include dimensioned plans, elevations, sections, details, and required clearances and service spaces around controller enclosures.
 - 1. Show tabulations of the following:
 - a. Each installed unit's type and details.
 - b. Factory-installed devices.
 - c. Nameplate legends.
 - d. Short-circuit current rating of integrated unit.
 - e. Listed and labeled for integrated short-circuit current (withstand) rating of OCPDs in combination controllers by an NRTL acceptable to authorities having jurisdiction.
 - f. Features, characteristics, ratings, and factory settings of individual OCPDs in combination controllers.
 - 2. Wiring Diagrams: For power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed controllers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Routine maintenance requirements for enclosed controllers and installed components.
 - 2. Manufacturer's written instructions for testing and adjusting circuit breaker and MCP trip settings.
 - 3. Manufacturer's written instructions for setting field-adjustable overload relays.
 - 4. Manufacturer's written instructions for testing, adjusting, and reprogramming reduced-voltage solid-state controllers.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store enclosed controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

1.8 PROJECT CONDITIONS

- A. Interruption of Existing Electrical Systems: Do not interrupt electrical systems in facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Architect and Owner no fewer than seven days in advance of proposed interruption of electrical systems.
 - 2. Indicate method of providing temporary utilities.
 - 3. Do not proceed with interruption of electrical systems without Architect's and Owner's written permission.
 - 4. Comply with NFPA 70E.

1.9 COORDINATION

- A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

C. Coordinate installation of roof curbs, equipment supports, and roof penetrations.

PART 2 - PRODUCTS

2.1 FULL-VOLTAGE CONTROLLERS

- A. General Requirements for Full-Voltage Controllers: Comply with NEMA ICS 2, general purpose, Class A.
- B. Magnetic Controllers: Full voltage, across the line, electrically held.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - a. <u>Eaton Electrical Inc.; Cutler-Hammer Business Unit</u>.
 - b. <u>General Electric Company; GE Consumer & Industrial Electrical Distribution</u>.
 - c. <u>Rockwell Automation, Inc.; Allen-Bradley brand</u>.
 - d. <u>Siemens Energy & Automation, Inc</u>.
 - e. <u>Square D; a brand of Schneider Electric</u>.
 - 2. Configuration: Nonreversing.
 - 3. Contactor Coils: Pressure-encapsulated type with coil transient suppressors.
 - a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 - 4. Power Contacts: Totally enclosed, double-break, silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.
 - 5. Control Circuits: 24 -V ac; obtained from integral CPT, with primary and secondary fuses, with CPT of sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 - 6. Solid-State Overload Relay:
 - a. Switch or dial selectable for motor running overload protection.
 - b. Sensors in each phase.
 - c. Class 10/20 selectable] tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 - d. Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.
 - e. Analog communication module.
 - 7. Provide minimum one N.C. and one N.O., isolated overload alarm contact.
 - 8. External overload reset push button.
- C. Combination Magnetic Controller: Factory-assembled combination of magnetic controller and disconnecting means.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following :

- a. <u>Eaton Electrical Inc.; Cutler-Hammer Business Unit</u>.
- b. <u>General Electric Company; GE Consumer & Industrial Electrical Distribution</u>.
- c. <u>Rockwell Automation, Inc.; Allen-Bradley brand</u>.
- d. <u>Siemens Energy & Automation, Inc</u>.
- e. <u>Square D; a brand of Schneider Electric</u>.
- 2. Nonfusible Disconnecting Means:
 - a. NEMA KS 1, heavy-duty, horsepower-rated, nonfusible switch.
 - b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
 - c. Auxiliary Contacts: N.O./N.C., arranged to activate before switch blades open.

2.2 ENCLOSURES

- A. Enclosed Controllers: NEMA ICS 6, to comply with environmental conditions at installed location.
 - 1. Dry and Clean Indoor Locations: Type 1.
 - 2. Outdoor Locations: Type 3R.

2.3 ACCESSORIES

- A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.
 - 1. Push Buttons, Pilot Lights, and Selector Switches: Heavy -duty, type.
 - a. Push Buttons: Covered types; momentary as indicated.
 - b. Pilot Lights: LED types; colors as indicated; push to test.
 - c. Selector Switches: Rotary type.
- B. Control Relays: Auxiliary and adjustable solid-state time-delay relays.
- C. Cover gaskets for Type 1 enclosures.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and surfaces to receive enclosed controllers, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
- B. Examine enclosed controllers before installation. Reject enclosed controllers that are wet, moisture damaged, or mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Wall-Mounted Controllers: Install enclosed controllers on walls with tops at uniform height unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."
- B. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Identify enclosed controllers, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved nameplate.
 - 3. Label each enclosure-mounted control and pilot device.

3.4 CONTROL WIRING INSTALLATION

- A. Install wiring between enclosed controllers and remote devices. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."
- B. Bundle, train, and support wiring in enclosures.
- C. Connect selector switches and other automatic-control selection devices where applicable.
 - 1. Connect selector switches with enclosed-controller circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed controller, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.

- 2. Test insulation resistance for each enclosed-controller element, component, connecting motor supply, feeder, and control circuits.
- 3. Test continuity of each circuit.
- 4. Verify that voltages at controller locations are within plus or minus 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Architect and Owner before starting the motor(s).
- 5. Test each motor for proper phase rotation.
- 6. Perform each electrical test and visual and mechanical inspection stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 8. Perform the following infrared (thermographic) scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each multi-pole enclosed controller. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Enclosed controllers will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports including a certified report that identifies enclosed controllers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.

3.7 **PROTECTION**

A. Replace controllers whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers.

This Page Left Intentionally Blank

SECTION 264313 - TRANSIENT-VOLTAGE SUPPRESSION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes field-mounted TVSS for low-voltage (120 to 600 V) power distribution and control equipment.

1.3 DEFINITIONS

- A. ATS: Acceptance Testing Specifications.
- B. SVR: Suppressed voltage rating.
- C. TVSS: Transient voltage surge suppressor(s), both singular and plural; also, transient voltage surge suppression.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating weights, electrical characteristics, furnished specialties, and accessories.
- B. Product Certificates: For TVSS devices, from manufacturer.
- C. Warranties: Sample of special warranties.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For TVSS devices to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a testing agency, and marked for intended location and application.
- B. Comply with IEEE C62.41.2 and test devices according to IEEE C62.45.

- C. Comply with NEMA LS 1.
- D. Comply with UL 1449, Third Edition
- E. Comply with NFPA 70.

1.7 PROJECT CONDITIONS

- A. Service Conditions: Rate TVSS devices for continuous operation under the following conditions unless otherwise indicated:
 - 1. Maximum Continuous Operating Voltage: Not less than 115 percent of nominal system operating voltage.
 - 2. Operating Temperature: 30 to 120 deg F (0 to 50 deg C).
 - 3. Humidity: 0 to 85 percent, noncondensing.

1.8 COORDINATION

A. Coordinate location of field-mounted TVSS devices to allow adequate clearances for maintenance.

1.9 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of surge suppressors that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SERVICE ENTRANCE SUPPRESSORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - 1. Advanced Protection Technologies Inc. (APT).
 - 2. Liebert Corporation; a division of Emerson Network Power.
 - 3. <u>Siemens Energy & Automation, Inc</u>.
 - 4. Square D; a brand of Schneider Electric.
 - 5. <u>Surge Suppression Incorporated</u>.
 - 6. Ditek
- B. Surge Protection Devices:
 - 1. Comply with UL 1449, Third Edition.
 - 2. Fabrication using bolted compression lugs for internal wiring.
 - 3. Redundant suppression circuits.

- 4. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
- 5. LED indicator lights for power and protection status.
- 6. Four -digit transient-event counter set to totalize transient surges.
- C. Peak Surge Current Rating: 120kA per phase.
- D. Protection modes and UL 1449 SVR for grounded wye circuits with 208Y/120 V, 3-phase, 4-wire circuits shall be as follows:
 - 1. Line to Neutral: 390 V for 208Y/120 V.
 - 2. Line to Ground: 400 V for 208Y/120 V.
 - 3. Neutral to Ground: 575 V for 208Y/120 V.

2.2 PANELBOARD SUPPRESSORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
- B. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Advanced Protection Technologies Inc. (APT).
 - 2. Liebert Corporation; a division of Emerson Network Power.
 - 3. Northern Technologies, Inc.; a division of Emerson Network Power.
 - 4. <u>Siemens Energy & Automation, Inc</u>.
 - 5. <u>Square D; a brand of Schneider Electric</u>.
 - 6. <u>Surge Suppression Incorporated</u>.
 - 7. Ditek
- C. Surge Protection Devices:
 - 1. Comply with UL 1449, Third Edition.
 - 2. Short-circuit current rating complying with UL 1449, Third Edition, and matching or exceeding the panelboard short-circuit rating and redundant suppression circuits; with individually fused metal-oxide varistors.
 - 3. Fabrication using bolted compression lugs for internal wiring.
 - 4. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
 - 5. LED indicator lights for power and protection status.
 - 6. Four -digit transient-event counter set to totalize transient surges.
- D. Peak Surge Current Rating: 120 kA per phase.
- E. Protection modes and UL 1449 SVR for grounded wye circuits with 208Y/120 V, 3-phase, 4-wire circuits shall be as follows:
 - 1. Line to Neutral: 390 V for 208Y/120 V.
 - 2. Line to Ground: 400 V for 208Y/120 V.
 - 3. Neutral to Ground: 575 V for 208Y/120 V.

2.3 ENCLOSURES

A. Indoor Enclosures: NEMA 250 Type 1.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install TVSS devices at service entrance on load side, with ground lead bonded to service entrance ground.
- B. Install TVSS devices for panelboards and auxiliary panels with conductors or buses between suppressor and points of attachment as short and straight as possible. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.
 - 1. Provide multiple, 30 -A circuit breaker as a dedicated disconnecting means for TVSS unless otherwise indicated.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
- B. TVSS device will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.3 STARTUP SERVICE

- A. Do not energize or connect service entrance equipment to their sources until TVSS devices are installed and connected.
- B. Do not perform insulation resistance tests of the distribution wiring equipment with the TVSS installed. Disconnect before conducting insulation resistance tests, and reconnect immediately after the testing is over.

SECTION 265100 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Interior lighting fixtures, lamps, and ballasts.
 - 2. Exit signs.
 - 3. Lighting fixture supports.
- B. Related Sections:
 - 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS

- A. BF: Ballast factor.
- B. CCT: Correlated color temperature.
- C. CRI: Color-rendering index.
- D. HID: High-intensity discharge.
- E. LER: Luminaire efficacy rating.
- F. Lumen: Measured output of lamp and luminaire, or both.
- G. Luminaire: Complete lighting fixture, including ballast housing if provided.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following:
 - 1. Physical description of lighting fixture including dimensions.
 - 2. Ballast, including BF.

- 3. Energy-efficiency data.
- 4. Life, output (lumens, CCT, and CRI), and energy-efficiency data for lamps.
- 5. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing & Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project.
 - a. Testing Agency Certified Data: For indicated fixtures, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining fixtures shall be certified by manufacturer.
 - b. Manufacturer Certified Data: Photometric data shall be certified by a manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Installation instructions.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

1.7 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide one of the products indicated on Drawings or an equal approved by the Engineer prior to the bid date.

2.2 GENERAL REQUIREMENTS FOR LIGHTING FIXTURES AND COMPONENTS

- A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.
- B. Fluorescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.
- C. Metal Parts: Free of burrs and sharp corners and edges.
- D. Sheet Metal Components: Steel unless otherwise indicated. Form and support to prevent warping and sagging.
- E. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- F. Diffusers:
 - 1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - a. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.
 - b. UV stabilized.
- G. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp and ballast characteristics:
 - a. "USE ONLY" and include specific lamp type.
 - b. Lamp diameter code (T-4, T-5, T-8, T-12, etc.), tube configuration (twin, quad, triple, etc.), base type, and nominal wattage for fluorescent and compact fluorescent luminaires.
 - c. Lamp type, wattage, bulb type (ED17, BD56, etc.) and coating (clear or coated) for HID luminaires.
 - d. Start type (preheat, rapid start, instant start, etc.) for fluorescent and compact fluorescent luminaires.
 - e. ANSI ballast type (M98, M57, etc.) for HID luminaires.
 - f. CCT and CRI for all luminaires.

2.3 BALLASTS FOR LINEAR FLUORESCENT LAMPS

- A. General Requirements for Electronic Ballasts:
 - 1. Comply with UL 935 and with ANSI C82.11.
 - 2. Designed for type and quantity of lamps served.
 - 3. Ballasts shall be designed for full light output unless another BF is indicated.

- 4. Sound Rating: Class A.
- 5. Total Harmonic Distortion Rating: Less than 10 percent.
- 6. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
- 7. Operating Frequency: 42 kHz or higher.
- 8. Lamp Current Crest Factor: 1.7 or less.
- 9. BF: 0.88 or higher.
- 10. Power Factor: 0.95 or higher.
- B. Luminaires controlled by occupancy sensors shall have programmed-start ballasts.
- 2.4 Electronic Programmed-Start Ballasts for T8 Lamps: Comply with ANSI C82.11. EXIT SIGNS
 - A. General Requirements for Exit Signs: Comply with UL 924 and NFPA 101; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.
 - B. Internally Lighted Signs:
 1. Lamps for AC Operation: LEDs, 50,000 hours minimum rated lamp life.

2.5 FLUORESCENT LAMPS

A. T8 instant-start lamps, rated 32 W maximum, nominal length of 48 inches (1220 mm), 2800 initial lumens (minimum), CRI 75 (minimum), color temperature 5000 K, and average rated life 20,000 hours unless otherwise indicated.

2.6 LIGHTING FIXTURE SUPPORT COMPONENTS

- A. Comply with Section 260529 "Hangers and Supports for Electrical Systems" for channel- and angle-iron supports and nonmetallic channel and angle supports.
- B. Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).
- C. Wires for Humid Spaces: ASTM A 580/A 580M, Composition 302 or 304, annealed stainless steel, 12 gage (2.68 mm).
- D. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Lighting fixtures:
 - 1. Set level, plumb, and square with ceilings and walls unless otherwise indicated.
 - 2. Install lamps in each luminaire.
- B. Lay-in Ceiling Lighting Fixtures Supports: Use grid as a support element.

- 1. Install ceiling support system rods or wires, independent of the ceiling suspension devices, for each fixture. Locate not more than 6 inches (150 mm) from lighting fixture corners.
- 2. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch (20-mm) metal channels spanning and secured to ceiling tees.
- 3. Install at least one independent support rod from structure to a tab on lighting fixture. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3.
- C. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.2 IDENTIFICATION

A. Install labels with panel and circuit numbers on concealed junction and outlet boxes. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

- A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to emergency and retransfer to normal.
- B. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.4 STARTUP SERVICE

A. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Owner.